Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Foods ; 13(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39123510

RESUMEN

The organic acids produced by lactic acid bacteria (LAB) during the fermentation of sourdoughs have the ability to reduce the growth of different molds. However, this ability depends on the LAB used. For this reason, in this study, the proportions of different LAB were optimized to obtain aqueous extracts (AEs) from sourdough to reduce fungal growth in vitro, control the acetic acid concentration, and obtain a specific lactic to acetic acid ratio. In addition, the optimized mixtures were used to formulate partially baked bread (PBB) and evaluate the mold growth and bread quality during refrigerated storage. Using a simplex-lattice mixture design, various combinations of Lactiplantibacillus plantarum, Lacticaseibacillus casei, and Lactobacillus acidophilus were evaluated for their ability to produce organic acids and inhibit mold growth. The mixture containing only Lpb. plantarum significantly reduced the growth rates and extended the lag time of Penicillium chrysogenum and P. corylophilum compared with the control. The AEs' pH values ranged from 3.50 to 3.04. Organic acid analysis revealed that using Lpb. plantarum yielded higher acetic acid concentrations than when using mixed LAB. This suggests that LAB-specific interactions significantly influence organic acid production during fermentation. The reduced radial growth rates and extended lag times for both molds compared to the control confirmed the antifungal properties of the AEs from the sourdoughs. Statistical analyses of the mixture design using polynomial models demonstrated a good fit for the analyzed responses. Two optimized LAB mixtures were identified that maximized mold lag time, targeted the desired acetic acid concentration, and balanced the lactic to acetic acid ratio. The addition of sourdough with optimized LAB mixtures to PBB resulted in a longer shelf life (21 days) and adequately maintained product quality characteristics during storage. PBB was subjected to complete baking and sensory evaluation. The overall acceptability was slightly higher in the control without sourdough (7.50), followed by bread formulated with the optimized sourdoughs (ranging from 6.78 to 7.10), but the difference was not statistically significant (p > 0.05). The sensory analysis results indicated that the optimization was used to successfully formulate a sourdough bread with a sensory profile closely resembling that of a nonsupplemented one. The designed LAB mixtures can effectively enhance sourdough bread's antifungal properties and quality, providing a promising approach for extending bread shelf life while maintaining desirable sensory attributes.

2.
J Agric Food Chem ; 72(25): 14294-14301, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38874060

RESUMEN

Enzymatic browning in fruits and vegetables, driven by polyphenol oxidase (PPO) activity, results in color changes and loss of bioactive compounds. Emerging technologies are being explored to prevent this browning and ensure microbial safety in foods. This study assessed the effectiveness of pulsed light (PL) and ultraviolet light-emitting diodes (UV-LED) in inhibiting PPO and inactivating Escherichia coli ATTC 25922 in fresh apple juice (Malus domestica var. Red Delicious). Both treatments' effects on juice quality, including bioactive compounds, color changes, and microbial inactivation, were examined. At similar doses, PL-treated samples (126 J/cm2) showed higher 2,2- diphenyl-1-picrylhydrazyl inhibition (9.5%) compared to UV-LED-treated samples (132 J/cm2), which showed 1.06%. For microbial inactivation, UV-LED achieved greater E. coli reduction (>3 log cycles) and less ascorbic acid degradation (9.4% ± 0.05) than PL. However, increasing PL doses to 176 J/cm2 resulted in more than 5 log cycles reduction of E. coli, showing a synergistic effect with the final temperature reached (55 °C). The Weibull model analyzed survival curves to evaluate inactivation kinetics. UV-LED was superior in preserving thermosensitive compounds, while PL excelled in deactivating more PPO and achieving maximal microbial inactivation more quickly.


Asunto(s)
Catecol Oxidasa , Escherichia coli , Jugos de Frutas y Vegetales , Malus , Viabilidad Microbiana , Rayos Ultravioleta , Catecol Oxidasa/metabolismo , Malus/química , Escherichia coli/efectos de la radiación , Jugos de Frutas y Vegetales/análisis , Jugos de Frutas y Vegetales/microbiología , Viabilidad Microbiana/efectos de la radiación , Irradiación de Alimentos/métodos
3.
Food Chem (Oxf) ; 6: 100158, 2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-36578793

RESUMEN

Kinetic and probabilistic (Time-to-Failure, TTF) models were used to predict the color (L*, a*, b* total color differences (ΔE), Hue and Chroma) stability of Justicia spicigera leaves pigments subjected to different temperatures (40 - 80 °C) and pHs (2 - 12). The change in pH caused different hues (from 60° = orange red to 268° = deep-blue) due to the shift effect of anthocyanins in the extract. Temperatures higher than 60 °C increased the color degradation. High heat sensitivity was observed at pH 4 (Ea = 90.27) and 10 (Ea = 154.99 kJ/mol). The Time-to-Failure model for both ΔE and Hue describes the effect of pH and temperature in the J. spicigera extracts. High pHs and temperatures applied to the extracts increased the probability of showing ΔEs > 4 or Hue changes over 20 %. Nearby the neutral region of pH, pigments of J. spicigera were more stable. The TTF model might be a useful tool to describe and predict the behavior of pigments added to foods.

4.
J Food Sci Technol ; 59(7): 2925-2930, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35734128

RESUMEN

This study evaluated the effectiveness of spraying juices, during shortwave ultraviolet irradiation (UVC) treatments as an alternative to promote more contact area, by means of ultrasonic atomization (UA) and pneumatic atomization (PA). Four juices with dissimilar physical characteristics were processed to assess the effect of suspended solids and turbidity. Antioxidant activity, anthocyanins, ascorbic acid, and inactivation of Saccharomyces cerevisiae inoculated in the juices were evaluated. Five decimal reduction cycles were reached after two passes of orange or grapefruit juice through the UVC + UA arrangement. On the other hand, five decimal reduction cycles were achieved after three passes in the UVC + PA arrangement. Losses of 11% and 14% of ascorbic acid were observed in orange and grapefruit juice, respectively, while anthocyanin content presented losses of 50% and antioxidant activity decreased by 40% for pomegranate and blueberry juice, correspondingly.

5.
Curr Res Food Sci ; 5: 629-633, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35373143

RESUMEN

Antifungal activity of thyme (Thymus vulgaris) essential oil (EO) in vapor-phase was tested against representative fungi in corn tortillas. The chemical composition of studied EO was analyzed by gas chromatography-mass spectroscopy, and its major components were linalool, thymol, and p-cymene. The antifungal activity was evaluated by determining the growth of Aspergillus niger or Penicillium expansum after exposure to EO vapors. The in vitro minimum inhibitory concentration (MIC) of the EO was determined by the inverted lid technique, while in situ MIC was determined on the corn tortillas inside an airtight container. The MICs obtained ranged from 160 to 200 µL of thyme EO/Lof air for in vitro conditions and 550-850 µL of the EO/Lof air in corn tortillas. The modified Gompertz model adequately described in vitro mold growth curves. Thyme EO was effective in preventing or significantly delaying growth of the contaminating molds on corn tortillas.

6.
Heliyon ; 7(10): e08234, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34754975

RESUMEN

The effect of different process variables, such as solid/liquid ratio (1: 1, 1: 3, or 1: 5 g/ml) and stirring speeds (0, 200, or 400 rpm), was studied on the extraction mechanisms of eucalyptus essential oil obtained by hydrodistillation (HD). Different performance parameters such as obtained yield, energy requirements, and environmental impact were compared to those obtained by steam distillation (SD). Two different mathematical models were used to describe the process behavior. The obtained results indicate that the system with a solid/liquid ratio of 1:5 g/ml using a stirring speed of 400 rpm yielded maximum for HD (1.19% ± 0.01%). The environmental impact expressed as Ecopoints (EI99) ranged between 50.87 ± 13.18 and 78.17 ± 13.82 mPT/g essential oil (EO) for systems with steam injection, whereas for HD took values between 16.9 ± 0.3 and 19.24 ± 1.4 mPT/g EO at optimal operating conditions. The model parameters allowed us to identify that large amounts of steam at lower heating velocities induce a high accumulation of EO in the aqueous layer (vapor-liquid equilibrium at the interface), favoring the extraction process.

7.
J Food Sci ; 84(6): 1281-1287, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31066918

RESUMEN

Complex coacervation between gelatin type B (GE) and chia mucilage (ChM) was studied. GE-ChM were mixed at mass ratios of 1:1, 2:1, 3:1, 4:1, and 1:2 in a pH range of 1.50 to 5.00, maintaining a total solid concentration of 0.2% (w/w), using turbidity and viscosity tests to obtain the highest yield of complex coacervates. To characterize the complex coacervates, morphology and Fourier-transform infrared spectroscopy (FTIR) were determined. The optimum yield for complex coacervation was achieved with a GE-ChM mass ratio of 2:1 and pH value of 3.6. The critical pH values associated with the formation of soluble (pHc ) and insoluble (pHɸ1 ) complexes, and complete dissociation (pHɸ2 ) at the optimum GE-ChM ratio were found to be 4.50, 4.10, and 2.00, respectively. It was observed that increasing the mass ratio of GE or ChM, the yield of complex coacervates decreased; the higher yields were obtained with the proportions of 2:1 and 1:1 with values of 68.25 ± 0.05% and 61.04 ± 0.05%, respectively. Capsules formed at mass ratios of 1:1, 2:1, and 3:1, had the characteristic grape agglomerate shape for complex coacervates. Further characterization with scanning electron microscopy (SEM) showed a spherical shape for capsules. FTIR spectrum of complex coacervates at optimum conditions had a combination of bands corresponding to GE and ChM, suggesting an interaction between GE-ChM during the formation of complex coacervates. Therefore, complex coacervates between GE-ChM can be formed, and could be used as an alternative as encapsulating agents to be applied in the food industry. PRACTICAL APPLICATION: Complex coacervation is a technique that is being studied in several applications in the food industry. However, studies are still being made to explore different possibilities of natural sources to be used in complex coacervation. This study showed that the combination of gelatin and chia mucilage may be an alternative as encapsulating agents for complex coacervation to be applied in the food industry.


Asunto(s)
Gelatina/química , Mucílago de Planta/química , Salvia/química , Cápsulas/química , Concentración de Iones de Hidrógeno , Semillas/química , Espectroscopía Infrarroja por Transformada de Fourier , Viscosidad
8.
Int J Food Microbiol ; 240: 115-123, 2017 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-27184972

RESUMEN

A Box-Behnken design was used to determine the effect of protein concentration (0, 5, or 10g of casein/100g), fat (0, 3, or 6g of corn oil/100g), aw (0.900, 0.945, or 0.990), pH (3.5, 5.0, or 6.5), concentration of cinnamon essential oil (CEO, 0, 200, or 400µL/kg) and incubation temperature (15, 25, or 35°C) on the growth of Aspergillus flavus during 50days of incubation. Mold response under the evaluated conditions was modeled by the modified Gompertz equation, logistic regression, and time-to-detection model. The obtained polynomial regression models allow the significant coefficients (p<0.05) for linear, quadratic and interaction effects for the Gompertz equation's parameters to be identified, which adequately described (R2>0.967) the studied mold responses. After 50days of incubation, every tested model system was classified according to the observed response as 1 (growth) or 0 (no growth), then a binary logistic regression was utilized to model A. flavus growth interface, allowing to predict the probability of mold growth under selected combinations of tested factors. The time-to-detection model was utilized to estimate the time at which A. flavus visible growth begins. Water activity, temperature, and CEO concentration were the most important factors affecting fungal growth. It was observed that there is a range of possible combinations that may induce growth, such that incubation conditions and the amount of essential oil necessary for fungal growth inhibition strongly depend on protein and fat concentrations as well as on the pH of studied model systems. The probabilistic model and the time-to-detection models constitute another option to determine appropriate storage/processing conditions and accurately predict the probability and/or the time at which A. flavus growth occurs.


Asunto(s)
Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/metabolismo , Microbiología de Alimentos/métodos , Aflatoxinas/metabolismo , Aspergillus flavus/aislamiento & purificación , Cinnamomum zeylanicum , Concentración de Iones de Hidrógeno , Cinética , Aceites Volátiles/farmacología , Probabilidad , Temperatura , Tiempo , Agua/metabolismo
9.
Food Microbiol ; 52: 124-30, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26338125

RESUMEN

Estimation of Listeria monocytogenes survival during thermoultrasonic treatments in non-isothermal conditions was determined considering an increment from 45 to 70 °C, assessing the adequacy of predictions through experimental data obtained in laboratory media model systems. In order to characterize the sonication effect on the survival pattern, observed behavior was compared to that obtained when only thermal treatment was applied. A noticeable impact on L. monocytogenes survival in non-isothermal conditions was observed when heat is combined with ultrasound, since the sonication effect modifies not only the temperature profile, but also the dynamic survival pattern. It was observed that both treatments were able to achieve a reduction of 5.5 log cycles of the initial population, although the inactivation temperature and the required time to reach such temperature were lower for thermoultrasonic treatments than for thermal treatments. Furthermore, as the temperature dependent parameters required to estimate the dynamic responses in non-isothermal treatments were initially determined from isothermal conditions, the sonication effect on these parameters and its implications for dynamic estimations, which are closely related to the nonlinearity of the systems, were also addressed; for thermal treatments, obtained isothermal curves were properly described by the Weibull model and first order kinetics, while for thermoultrasonication treatments a clear non-linear behavior was observed and only the Weibullian model was able to adequately describe the inactivation pattern.


Asunto(s)
Listeria monocytogenes/crecimiento & desarrollo , Recuento de Colonia Microbiana , Cinética , Listeria monocytogenes/química , Viabilidad Microbiana , Modelos Biológicos , Temperatura , Ultrasonido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA