Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Comput Aided Drug Des ; 16(4): 473-485, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31483234

RESUMEN

BACKGROUND: Coronary heart disease generally occurs due to cholesterol accumulation in the walls of the heart arteries. Statins are the most widely used drugs which work by inhibiting the active site of 3-Hydroxy-3-methylglutaryl-CoA reductase (HMGCR) enzyme that is responsible for cholesterol synthesis. A series of atorvastatin analogs with HMGCR inhibition activity have been synthesized experimentally which would be expensive and time-consuming. METHODS: In the present study, we employed both the QSAR model and chemical similarity search for identifying novel HMGCR inhibitors for heart-related diseases. To implement this, a 2D QSAR model was developed by correlating the structural properties to their biological activity of a series of atorvastatin analogs reported as HMGCR inhibitors. Then, the chemical similarity search of atorvastatin analogs was performed by using PubChem database search. RESULTS AND DISCUSSION: The three-descriptor model of charge (GATS1p), connectivity (SCH-7) and distance (VE1_D) of the molecules is obtained for HMGCR inhibition with the statistical values of R2= 0.67, RMSEtr= 0.33, R2 ext= 0.64 and CCCext= 0.76. The 109 novel compounds were obtained by chemical similarity search and the inhibition activities of the compounds were predicted using QSAR model, which were close in the range of experimentally observed threshold. CONCLUSION: The present study suggests that the QSAR model and chemical similarity search could be used in combination for identification of novel compounds with activity by in silico with less computation and effort.


Asunto(s)
Atorvastatina/análogos & derivados , Atorvastatina/farmacología , Enfermedad Coronaria/tratamiento farmacológico , Descubrimiento de Drogas , Inhibidores de Hidroximetilglutaril-CoA Reductasas/química , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Simulación por Computador , Humanos , Relación Estructura-Actividad Cuantitativa
2.
Artículo en Inglés | MEDLINE | ID: mdl-31649924

RESUMEN

Amino acid repeats play an important role in the structure and function of proteins. Analysis of long repeats in protein sequences enables one to understand their abundance, structure and function in the protein universe. In the present study, amino acid repeats of length >50 (long repeats) were identified in a non-redundant set of UniProt sequences using the RADAR program. The underlying structures and functions of these long repeats were carried out using the Gene3D for structural domains, Pfam for functional domains and enzyme and non-enzyme functional classification for catalytic and binding of the proteins. From a structural perspective, these long repeats seem to predominantly occur in certain architectures such as sandwich, bundle, barrel, and roll and within these architectures abundant in the superfolds. The lengths of the repeats within each fold are not uniform exhibiting different structures for different functions. We also observed that long repeats are in the domain regions of the family and are involved in the function of the proteins. After grouping based on enzyme and non-enzyme classes, we observed the abundant occurrence of long repeats in specific catalytic and binding of the proteins. In this study, we have analyzed the occurrence of long repeats in the protein sequence universe apart from well-characterized short tandem repeats in sequences and their structures and functions of the proteins at the domain level. The present study suggests that long repeats may play an important role in the structure and function of domains of the proteins.

3.
Gene ; 671: 10-20, 2018 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-29859284

RESUMEN

Earlier, we showed that micro RNA-132 (miR-132) regulate the immediate early genes (IEGs) in the olfactory bulb (OB) of fruit bat Cynopterus sphinx during olfactory learning. This study was designed to examine whether the miR-132 regulate other proteins in OB during olfactory learning. To test this, miR-132 anti-sense oligodeoxynucleotide (AS-ODN) was delivered to the OB and then trained to novel odor. The 2-dimensional gel electrophoresis analysis showed that inhibition of miR-132 altered olfactory training induced expression of 321 proteins. Further, liquid chromatography-mass spectrometry (LC-MS/MS) analysis reveals the identity of differently expressed proteins such as phosphoribosyl transferase domain containing protein (PRTFDC 1), Sorting nexin-8 (SNX8), Creatine kinase B-type (CKB) and Annexin A11 (ANX A11). Among them PRTFDC 1 showing 189 matching peptides with highest sequence coverage (67.0%) and protein-protein interaction analysis showed that PRTFDC 1 is a homolog of hypoxanthine phosphoribosyltransferase-1 (HPRT-1). Subsequent immunohistochemical analysis (IHC) showed that inhibition of miR-132 down-regulated HPRT expression in OB of C. sphinx. In addition, western blot analysis depicts that HPRT, serotonin transporter (SERT), N-methyl-d-asparate (NMDA) receptors (2A,B) were down-regulated, but not altered in OB of non-sense oligodeoxynucleotide (NS-ODN) infused groups. These analyses suggest that miR-132 regulates the process of olfactory learning and memory formation through SERT and NMDA receptors signalling, which is possibly associated with the PRTFDC1-HPRT interaction.


Asunto(s)
Quirópteros/fisiología , Proteínas Inmediatas-Precoces/metabolismo , Aprendizaje/fisiología , MicroARNs/genética , Olfato/fisiología , Animales , Quirópteros/genética , Cromatografía Liquida , Electroforesis en Gel Bidimensional , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Bulbo Olfatorio/metabolismo , Transducción de Señal , Espectrometría de Masas en Tándem
4.
Nat Prod Bioprospect ; 4(4): 251-5, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25089244

RESUMEN

Tryptophan hydroxylase (TPH) catalyses l-tryptophan into 5-hydroxy-l-tryptophan, which is the first and rate-limiting step of serotonin (5-HT) biosynthesis. Earlier, we found that TPH2 up-regulated in the hippocampus of postnatal rats after the oral treatment of Bacopa monniera leaf extract containing the active compound bacosides. However, the knowledge about the interactions between bacosides with TPH is limited. In this study, we take advantage of in silico approach to understand the interaction of bacoside-TPH complex using three different docking algorithms such as HexDock, PatchDock and AutoDock. All these three algorithms showed that bacoside A and A3 well fit into the cavity consists of active sites. Further, our analysis revealed that major active compounds bacoside A3 and A interact with different residues of TPH through hydrogen bond. Interestingly, Tyr235, Thr265 and Glu317 are the key residues among them, but none of them are either at tryptophan or BH4 binding region. However, its note worthy to mention that Tyr 235 is a catalytic sensitive residue, Thr265 is present in the flexible loop region and Glu317 is known to interacts with Fe. Interactions with these residues may critically regulate TPH function and thus serotonin synthesis. Our study suggested that the interaction of bacosides (A3/A) with TPH might up-regulate its activity to elevate the biosynthesis of 5-HT, thereby enhances learning and memory formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA