Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Food Microbiol ; 421: 110800, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38878705

RESUMEN

To our knowledge, this study is the first to elucidate the bactericidal efficacy of unpeeled carrots (hereafter referred to as carrots) pretreated with Ultra Violet-C (UV-C) against subsequent contamination with Listeria monocytogenes. Carrots pretreated with UV-C (240 mJ/cm2) exhibited a significant antilisterial effect within 2 h. In fact, the population of UV-C-pretreated carrots decreased from 7.94 log CFU/cm2 to levels below the limit of detection (LOD; <1.65 log CFU/cm2) within 24 h. For carrots that were not pretreated with UV-C, 3-4 log reductions were found after 24 h. Carrots pretreated with UV-C exhibited antimicrobial activity against another gram-positive pathogen, Staphylococcus aureus, but not against the gram-negative pathogens, E. coli O157:H7 and Salmonella enterica. Pretreatment with UV-C created a lasting antimicrobial effect as introducing L. monocytogenes on carrots, 72 h post-UV-C treatment, still maintained the antilisterial effect. Notably, all UV-C doses in the range of 48-240 mJ/cm2 induced a lasting antilisterial effect. The bactericidal effects against L. monocytogenes were confirmed in three varieties of washed and unwashed carrots (Danvers, Nantes, and Chantenay). Fluorescence microscopy confirmed the bactericidal effect of UV-C-pretreated carrots on the survival of L. monocytogenes. Conclusively, pretreating carrots with UV-C can reduce the population of L. monocytogenes to levels below the LOD and may further prevent pathogen growth during cold storage. Additional studies are necessary to discern the mechanism underlying the bactericidal efficacy of UV-C-pretreated carrots.


Asunto(s)
Daucus carota , Listeria monocytogenes , Rayos Ultravioleta , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/crecimiento & desarrollo , Listeria monocytogenes/efectos de la radiación , Daucus carota/microbiología , Microbiología de Alimentos , Staphylococcus aureus/efectos de los fármacos , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Recuento de Colonia Microbiana , Escherichia coli O157/efectos de los fármacos , Escherichia coli O157/efectos de la radiación , Escherichia coli O157/crecimiento & desarrollo , Salmonella enterica/efectos de los fármacos , Salmonella enterica/efectos de la radiación , Salmonella enterica/crecimiento & desarrollo
2.
Front Microbiol ; 13: 906040, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36081801

RESUMEN

Lettuce wraps are popular in Korean cuisine for their high nutritional value and versatility as healthy additions to multiple dishes. Microbial contamination of lettuce is a major concern, as lettuce is consumed fresh without cooking. Among foodborne pathogens, the spore-forming, facultative anaerobic bacterium, Bacillus cereus is one of the frequently detected pathogen in lettuce in Korea. In this study, we investigated the prevalence and distribution of Bacillus cereus strains in lettuce production farms and further evaluated the enterotoxin gene profiles, antibiotic susceptibility, multidrug resistance pattern, and genetic differences among the B. cereus group isolates. Of the 140 samples isolated from 10 lettuce production farms, 30 samples (21.42%) were positive for B. cereus in which 19 (31.6%) and 10 (23.25%) were from soil and lettuce, respectively. The enterotoxin patterns A (hblCDA, nheABC, entFM, and cytK genes) and B (hblCDA, nheABC, and entFM genes) accounted for 50% and 20% of all the isolates, whereas the emetic gene cesB was not detected in any of the B. cereus group isolates. Antibiotic susceptibility testing of the B. cereus group isolates revealed that all the strains were predominantly resistant to ß-lactam antibiotics except imipenem and generally susceptible to most of the non ß-lactam antibiotics, including gentamycin, streptomycin, chloramphenicol, and tetracycline. ERIC-PCR and MLST analysis revealed high genetic diversity among the 30 B. cereus group isolates, which belonged to 26 different sequence types (STs) and seven new STs. Moreover, isolates with identical STs exhibited similar patterns of antibiotic resistance and enterotoxin profiles. Results of this study indicate a high prevalence of B. cereus group isolates in lettuce production farms in the Republic of Korea.

3.
Plant Pathol J ; 37(5): 494-501, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34847636

RESUMEN

Pseudomonas cichorii secretes effectors that suppress defense mechanisms in host plants. However, the function of these effectors, including avirulence protein E1 (AvrE1), in the pathogenicity of P. cichorii, remains unexplored. In this study, to investigate the function of avrE1 in P. cichorii JBC1 (PcJBC1), we created an avrE1-deficient mutant (JBC1ΔavrE1) using CRISPR/Cas9. The disease severity caused by JBC1ΔavrE1 in tomato plants significantly decreased by reducing water soaking during early infection stage, as evidenced by the electrolyte leakage in infected leaves. The disease symptoms caused by JBC1ΔavrE1 in the cabbage midrib were light-brown spots compared to the dark-colored ones caused by PcJBC1, which indicates the role of AvrE1 in cell lysis. The avrE1-deficient mutant failed to elicit cell death in non-host tobacco plants. Disease severity and cell death caused by JBC1ΔavrE1 in host and non-host plants were restored through heterologous complementation with avrE1 from Pseudomonas syringae pv. tomato DC3000 (PstDC3000). Overall, our results indicate that avrE1 contributes to cell death during early infection, which consequently increases disease development in host plants. The roles of PcJBC1 AvrE1 in host cells remain to be elucidated.

4.
Foods ; 10(9)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34574243

RESUMEN

Contamination by Listeria monocytogenes in packaged produce is a major concern. The purpose of this study was to find natural and affordable sanitizers to reduce L. monocytogenes contamination in agricultural products. Organic acids, ultraviolet-C (UV-C), and ethanol were analyzed either alone or in combination to assess their ability to reduce L. monocytogenes population in radish, oriental melon, and carrot samples. In radish samples, 3% malic acid combined with UV-C at a dosage of 144 mj/cm2 significantly reduced (>4 log CFU/g) the population of L. monocytogenes (1.44 ± 0.5) compared to the control sample (5.14 ± 0.09). In the case of the melon samples, exposure to UV-C at a dosage of 144 mj/cm2 combined with 3% lactic acid (2.73 ± 0.75) or 50% ethanol (2.30 ± 0.01) was effective against L. monocytogenes compared to the control sample (5.10 ± 0.19). In carrot samples, 3% lactic acid combined with 144 mj/cm2 dosage UV-C reduced L. monocytogenes population (4.48 ± 0.25) more than in the control sample (5.85 ± 0.08). These results reveal that sanitizers that are effective for one crop are less effective for another crop indicating that effective prevention methods should be customized for each crop to prevent pathogen cross contamination during postharvest washing.

5.
Mycobiology ; : 87-96, 2019.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-760523

RESUMEN

Fungi produce various secondary metabolites that have beneficial and harmful effects on other organisms. Those bioactive metabolites have been explored as potential medicinal and antimicrobial resources. However, the activities of the culture filtrate (CF) and metabolites of white-rot fungus (Schizophyllum commune) have been underexplored. In this study, we assayed the antimicrobial activities of CF obtained from white-rot fungus against various plant pathogens and evaluated its efficacy for controlling anthracnose and gray mold in pepper plants. The CF inhibited the mycelial growth of various fungal plant pathogens, but not of bacterial pathogens. Diluted concentrations of CF significantly suppressed the severity of anthracnose and gray mold in pepper fruits. Furthermore, the incidence of anthracnose in field conditions was reduced by treatment with a 12.5% dilution of CF. The active compound responsible for the antifungal and disease control activity was identified and verified as schizostatin. Our results indicate that the CF of white-rot fungus can be used as an eco-friendly natural product against fungal plant pathogens. Moreover, the compound, schizostatin could be used as a biochemical resource or precursor for development as a pesticide. To the best of our knowledge, this is the first report on the control of plant diseases using CF and active compound from white-rot fungus. We discussed the controversial antagonistic activity of schizostatin and believe that the CF of white-rot fungus or its active compound, schizostatin, could be used as a biochemical pesticide against fungal diseases such as anthracnose and gray mold in many vegetables.


Asunto(s)
Agaricales , Frutas , Hongos , Incidencia , Enfermedades de las Plantas , Plantas , Verduras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA