Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 14(24)2021 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-34947462

RESUMEN

Supplementary cementitious materials (SCMs), such as fly ash (FA), blast furnace slag (BS), and silica fume (SF), have been mostly used as a replacement for Portland cement (PC). Replacing the SCMs with cement can provide improved strength characteristics; however, their applicability depends on the flow characteristics of the fresh mixtures. In this study, the rheological performance of cementitious suspensions in paste scale with different water-to-solid (W/S) volume ratios, varied from 1.25, 1.50, 1.75, 2.00, 2.25, to 2.50, was evaluated. As a result of the rheological tests, the yield stress and plastic viscosity of PC, FA, BS, and SF suspensions decreased as the W/S ratio increased. This study also estimated the inter-particle distances of the cementitious suspensions, and their relationship to the rheological properties was established. The inter-particle distances of the PC, FA, BS, and SF suspensions were in the ranges of 5.74~14.67 µm, 5.18~11.66 µm, 3.82~9.34 µm, and 0.107~0.27 µm, respectively. For very fine particles with a large surface area, the sensitivity to the rheological properties was high and the sensitivity was low when the particle sizes increased, indicating that the rheological properties were more sensitive to fine particles.

2.
Materials (Basel) ; 13(4)2020 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-32098441

RESUMEN

In recent years, advanced materials have attracted considerable interest in the field of temperature detection and sensing. This study examined the thermochromic properties of inorganic manganese violet (MV) with increasing temperature. According to the thermochromic test, the material was found to have reversible and irreversible color change properties. The MV pigment was then applied to cementitious material at ratios of 1%, 3%, and 5%. The mixed cement samples with MV pigment were heated in a furnace, and digital images were captured at each temperature interval to evaluate the changes in the color information on the surface of the specimen. The mixed samples exhibited an irreversible thermochromic change from dark violet to grayish green above 400 °C. At the critical temperature of 440 °C, the RGB values increased by approximately 22%-55%, 28%-68%, and 7%-25%, depending on the content of MV pigment. In Lab space, the L value increased by approximately 23%-60% at 440 °C. The a value completely changed from positive to negative, and the b value changed from negative to positive. All the values differed according to the content of MV pigment at room temperature but approached similar ranges at the critical temperature, irrespective of the amount of MV pigment. To assess the changes in their microstructure and composition, scanning electron microscopy and energy dispersive X-ray spectroscopy were performed on the samples exposed to temperatures ranging from room temperature to 450 °C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA