Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; 40(21): 10715-10729, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34243683

RESUMEN

In this work, interactions of pyrimidine derivative Schiff base ligand (DMPMM) were studied and its stabilized powder nickel nanoparticles (DMPMM-NiNPs) were synthesized and various biological studies were evaluated. DNA binding studies of CT-DNA with prepared compounds in Tris-HCl/NaCl buffer were carried out by traditional UV-Visible and fluorescence spectroscopic methods, viscosity measurements and cyclic voltammetry. Results showed that the small scale of DMPMM had less activity to interact with biological systems and when it assembled on nickel nanoparticles surface the activity increased. Thermal denaturation and sonochemical denaturation studies of DNA with the presence and the absence of our compounds also were done by UV-Visible spectroscopic method and its results indicated that the synthesized compounds increased the denaturation temperature. BSA binding studies of synthesized compounds were done by UV-Visible and fluorescence spectroscopy. Molecular docking of prepared ligand and its nanoparticles with biomolecules (DNA and BSA) were studied. Antimicrobial studies of the DMPMM and DMPMM-NiNPs were carried out by Agar-Agar well diffusion method. Anticancer studies results evidenced that the synthesized DMPMM-NiNPs had good selectivity to control the growth of cancer cells without damaging the normal cells. Various antioxidant scavenging studies results have shown that DMPMM and DMPMM-NiNPs have significant antioxidant activity. HighlightsStable and solid nickel nanoparticles were prepared.The size of the prepared nickel nanoparticles was nearly 3 to 8 nm.Organic ligand capped nickel nanoparticles interacted with DNA and BSA.Ni nanoparticles increased the denaturation temperature of DNA.It was found to have good anticancer activity with fewer side effects than cisplatin.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Nanopartículas , Bases de Schiff/farmacología , Bases de Schiff/química , Níquel/química , Simulación del Acoplamiento Molecular , Antioxidantes/farmacología , Antioxidantes/química , Ligandos , Agar , Antineoplásicos/farmacología , Antineoplásicos/química , ADN/química , Pirimidinas/farmacología , Pirimidinas/química , Nanopartículas/química , Complejos de Coordinación/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA