Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 245: 322-329, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31158684

RESUMEN

Dimethylamine (DMA) possesses an obnoxious odor which has resulted in public concern during the past several decades. A rare bacterial species proficient to degrade DMA, designated IR-26, was isolated from Indian Oil Corporation Limited (IOCL) and identified as Agromyces and Ochrobactrum sp., which has presented a rapid degradation when compared to other bacterial species which were capable to degrade DMA. The removal efficiency of 100% has been calculated in different concentration of DMA. The kinetic study reveals the maximum reduction rate of DMA was 0.11 per hour and the maximum growth rate of biomass was 0.013 per hour respectively. The saturation constant of DMA was around 1.96 mg/L which shows a high affinity of DMA. The importance of these analyses is offered and conversed in this paper.


Asunto(s)
Actinomycetales , Ochrobactrum , Biodegradación Ambiental , Dimetilaminas , Cinética
2.
J Environ Manage ; 205: 319-336, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29035719

RESUMEN

Nitrogenous gaseous emissions commonly have an obnoxious odor associated with it, which when discharged into the environment results in serious environmental problems and health hazards. Several strategies for mitigation of nitrogenous odorants have been reported which include physical, chemical and biological methods. Biological treatments are widely employed because of their efficiency even at low concentration, where physical and chemical methods are not effective. Most commonly used biological treatment methods are biofiltration, biotrickling filters and membrane bioreactors with innovative reactor design, mixing pattern, and air sparging, for example FEBR, ALR, etc. These treatment methods require a critical assessment for the mitigation of obnoxious nitrogen emissions, especially in the context of environmental protection. This review offers a critical evaluation of treatment methods for the mitigation of nitrogenous odorous compound with a key emphasis on biological treatment systems. Also, various mathematical modelling techniques required for optimized operation of biotreatment systems has been discussed.


Asunto(s)
Reactores Biológicos , Nitrógeno , Biodegradación Ambiental , Filtración , Gases , Odorantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA