Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Ayurveda Integr Med ; 11(3): 281-286, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30366785

RESUMEN

BACKGROUND: Cyclea peltata is one of the herbs mentioned in ancient scriptures of Ayurveda and is used in different types of Ayurvedic gritham preparations. Moreover, in traditional/tribal medicine C. peltata is used as digestive, anti-inflammatory, diuretic and to treat jaundice, digestive disorders, etc. OBJECTIVE: Activity guided fractionation of C. peltata and in correlation with the levels of bioactive compound tetrandrine. MATERIALS AND METHODS: Preliminary phytochemical screening, estimation of total alkaloid content, preparation of different extracts of C. peltata (crude extract CP, hexane extract HCP, chloroform extract CCP, methanol extract MCP, alkaloid fraction ACP). In vitro anti-inflammatory studies using RAW 264.7 cells and in vitro antioxidant assays of the different extracts of C. peltata. HPTLC estimation of tetrandrine (TET) was carried out using solvent system toluene: ethyl acetate: diethylamine (7.2: 2: 0.8) and isolation of TET from ACP. RESULTS: Preliminary phytochemical studies of C. peltata showed the presence of alkaloid content in all extracts. Whereas, saponins, steroids and terpenoids were detected in CP and CCP. ACP and TET showed significant in vitro anti-inflammatory and antioxidant activity when compared to other extracts. ACP and TET (100 µg/ml) treatment significantly inhibited the mRNA expression of iNOS, COX-2, TNF-α in LPS treated RAW 264.7 cells. HPTLC estimation of bioactive compound tetrandrine was highest in ACP-228.4 µg/mg followed by CP-29.62 µg/mg, CCP-23.46 µg/mg, MCP-18.82 µg/mg and HCP-1.25 µg/mg. TET has been isolated from ACP. CONCLUSION: The results of the present in vitro assays revealed that the alkaloid fraction (ACP) is the most active fraction when compared to other extracts and has a positive correlation with the levels of bioactive compound tetrandrine.

2.
Asian Pac J Trop Biomed ; 4(2): 143-51, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25182286

RESUMEN

OBJECTIVE: To evaluate the hepatoprotective and antioxidant properties of alkaloid extract of Cyclea peltata (C. peltata) against paracetamol/carbon tetra chloride induced liver damage in Wistar rats. METHODS: In vivo paracetamol/carbon tetrachloride induced liver damage in Wistar rats, in vitro free radical scavenging studies, HPTLC estimation of tetrandrine and direct analysis in real time- mass spectrometry of alkaloid extract of C. peltata were used for the validation. RESULTS: The results showed that pretreatment with alkaloid extract of C. peltata caused significant reduction of serum glutamate pyruvate transaminase, serum glutamate oxaloacetate transaminase, serum alkaline phosphatase, serum cholesterol, liver malondialdehyde levels. The reduced glutathione, catalase, superoxide dismutase levels in liver were increased with alkaloid extract of C. peltata treatment. These results were almost comparable to silymarin and normal control. Histopathological studies also substantiated the biochemical findings. The in vitro hydroxyl, superoxide and DPPH scavenging study of alkaloid extract of C. peltata showed significant free radical scavenging property. CONCLUSIONS: The hepatoprotective property of alkaloid extract of C. peltata against paracetamol/carbon tetrachloride may be due the synergistic action of alkaloids especially tetrandrine, fangchinoline through free radical scavenging and thus preventing oxidative stress.

3.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-672728

RESUMEN

Objective: To evaluate the hepatoprotective and antioxidant properties of alkaloid extract of Cyclea peltata (C. peltata) against paracetamol/carbon tetra chloride induced liver damage in Wistar rats.Methods: In vivo paracetamol/carbon tetrachloride induced liver damage in Wistar rats, in vitro free radical scavenging studies, HPTLC estimation of tetrandrine and direct analysis in real time-mass spectrometry of alkaloid extract of C. peltata were used for the validation. Results: The results showed that pretreatment with alkaloid extract of C. peltata caused significant reduction of serum glutamate pyruvate transaminase, serum glutamate oxaloacetate transaminase, serum alkaline phosphatase, serum cholesterol, liver malondialdehyde levels. The reduced glutathione, catalase, superoxide dismutase levels in liver were increased with alkaloid extract of C. peltata treatment. These results were almost comparable to silymarin and normal control. Histopathological studies also substantiated the biochemical findings. The in vitro hydroxyl, superoxide and DPPH scavenging study of alkaloid extract of C. peltata showed significant free radical scavenging property.Conclusions:The hepatoprotective property of alkaloid extract of C. peltata against paracetamol/carbon tetrachloride may be due the synergistic action of alkaloids especially tetrandrine, fangchinoline through free radical scavenging and thus preventing oxidative stress.

4.
J Exp Bot ; 62(15): 5429-36, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21862483

RESUMEN

Prey capture and digestion in Nepenthes spp. through their leaf-evolved biological traps involve a sequence of exciting events. Sugar-rich nectar, aroma chemicals, narcotic alkaloid secretions, slippery wax crystals, and other biochemicals take part in attracting, capturing, and digesting preys in Nepenthes pitchers. Here we report the distribution of three potent naphthoquinones in Nepenthes khasiana and their roles in prey capture. Plumbagin was first detected in N. khasiana, and its content (root: 1.33 ± 0.02%, dry wt.) was the highest found in any natural source. Chitin induction enhanced plumbagin levels in N. khasiana (root: 2.17 ± 0.02%, dry wt.). Potted N. khasiana plants with limited growth of roots and aerial parts, showed higher levels of plumbagin accumulation (root: 1.92 ± 0.02%; root, chitin induction: 3.30 ± 0.21%, dry wt.) compared with field plants. Plumbagin, a known toxin, insect ecdysis inhibitor, and antimicrobial, was also found embedded in the waxy layers at the top prey capture region of N. khasiana pitchers. Chitin induction, mimicking prey capture, produced droserone and 5-O-methyl droserone in N. khasiana pitcher fluid. Both these naphthoquinone derivatives provide antimicrobial protection to the pitcher fluid from visiting preys. A two-way barrier was found between plumbagin and its two derivatives. Plumbagin was never detected in the pitcher fluid whereas both its derivatives were only found in the pitcher fluid on chitin induction or prey capture. The three naphthoquinones, plumbagin, droserone, and 5-O-methyl droserone, act as molecular triggers in prey capture and digestion in the carnivorous plant, N. khasiana.


Asunto(s)
Quitina/química , Magnoliopsida/química , Magnoliopsida/fisiología , Naftoquinonas/química , Animales , Cromatografía Líquida de Alta Presión , Insectos , Conducta Predatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA