Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 141: 466-480, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35063707

RESUMEN

Ti-6Al-4V has been used as a surgical implant material for a long time because of its combination of strength, corrosion resistance and biocompatibility. However, there remains much that is not understood about how the surface reacts with the environment under tribocorrosion conditions. In particular, the conditions under which tribofilms form and their role on friction and wear are not clear. To evaluate the complicated nature of the dynamic surface microstructural changes on the wear track, high resolution transmission electron microscopy (TEM), scanning transmission electron microscope (STEM) and electron energy loss spectroscopy (EELS) have been used to characterise the structure and chemical composition of the tribofilm. Detailed analysis of the formation and structure of the tribofilm and the metal surface deformation behaviour were studied as a function of applied potential and the role of proteins in the lubricant. For the first time, graphitic and onion-like carbon structures from wear debris were found in the testing solution. The presence of carbon nanostructures in the tribocorrosion process and the formation of the tribofilm leads to an improved tribocorrosion behaviour of the system, in particular a reduction in wear and friction. A detailed, quantitative, analysis of surface deformation was undertaken, in particular, the geometrically necessary dislocation (GND) density was quantified using precession electron diffraction (PET). A clear correlation between applied potential, tribofilm formation and the surface strain was established. STATEMENT OF SIGNIFICANCE: The formation of tribofilm and microstructure modification of the Ti-6Al-4V surface during tribocorrosion in a physiological environment is not fully understood. In particular, the correlation between microstructural changes and electrochemical conditions is not clear. This study presents a detailed investigation of the structure and chemical composition of tribofilms at the nanoscale during tribocorrosion tests in simulated body fluid and gives a detailed and quantitative description of the evolved surface structure. A clear correlation between applied potential, tribofilm formation and the surface strain was established. Moreover, particular attention is paid to the wear debris particles captured from the lubricating solution, including nanocarbon onion structures. The implications for tribocorrosion of the alloy in its performance as an implant are discussed.


Asunto(s)
Líquidos Corporales , Titanio , Aleaciones , Carbono , Corrosión , Ensayo de Materiales , Propiedades de Superficie
2.
Sci Adv ; 6(46)2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33177083

RESUMEN

Hydrogen embrittlement is shown to proceed through a previously unidentified mechanism. Upon ingress to the microstructure, hydrogen promotes the formation of low-energy dislocation nanostructures. These are characterized by cell patterns whose misorientation increases with strain, which concomitantly attracts further hydrogen up to a critical amount inducing failure. The appearance of the failure zone resembles the "fish eye" associated to inclusions as stress concentrators, a commonly accepted cause for failure. It is shown that the actual crack initiation is the dislocation nanostructure and its associated strain partitioning.

3.
Science ; 355(6330): 1196-1199, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28302855

RESUMEN

The design of atomic-scale microstructural traps to limit the diffusion of hydrogen is one key strategy in the development of hydrogen-embrittlement-resistant materials. In the case of bearing steels, an effective trapping mechanism may be the incorporation of finely dispersed V-Mo-Nb carbides in a ferrite matrix. First, we charged a ferritic steel with deuterium by means of electrolytic loading to achieve a high hydrogen concentration. We then immobilized it in the microstructure with a cryogenic transfer protocol before atom probe tomography (APT) analysis. Using APT, we show trapping of hydrogen within the core of these carbides with quantitative composition profiles. Furthermore, with this method the experiment can be feasibly replicated in any APT-equipped laboratory by using a simple cold chain.

4.
J Mech Behav Biomed Mater ; 31: 145-51, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24140384

RESUMEN

Zirconia femoral heads retrieved from patients after different implantation periods (up to 13 years) were analysed using vertical scanning interferometry, atomic force microscopy and Raman microspectroscopy. A range of topographical and compositional changes on the surface of the retrievals are reported in this work. The study revealed that changes in roughness are the result of a combination of factors, i.e. scratching, surface upheaval due to transformation to the monoclinic phase and grain pull-out. Clusters of transformed monoclinic grains were observed on heads implanted for more than 3 years. The phase composition of these clusters was confirmed by Raman microspectroscopy. Increased abrasive wear and a higher monoclinic phase content concentrated on the pole of the femoral heads, confirming that the tetragonal to monoclinic phase transformation was not only induced by the tetragonal phase metastability and environmental conditions but mechanical and tribological factors, also affected the transformation kinetics. Additionally, the head implanted for 13 years showed evidence of a self-polishing mechanism leading to a considerable smoothening of the surface. These observations provide an insight into the interrelated mechanisms underlying the wear and transformation process on zirconia ceramics during implantation.


Asunto(s)
Cabeza Femoral/cirugía , Prótesis de Cadera , Nanopartículas/química , Nanopartículas/ultraestructura , Circonio/química , Remoción de Dispositivos , Análisis de Falla de Equipo , Femenino , Humanos , Masculino , Ensayo de Materiales , Persona de Mediana Edad , Tamaño de la Partícula , Falla de Prótesis , Propiedades de Superficie
5.
Acta Biomater ; 9(4): 6226-35, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23219845

RESUMEN

Zirconia has been used as an orthopaedic material since 1985 and is increasingly used in dental applications. One major concern with the use of zirconia is the significant loss in mechanical properties through hydrothermal degradation, with the uncontrolled transformation of tetragonal to monoclinic (t→m) zirconia. We report on the addition of alumina and lanthana as dopants to an yttria-stabilized tetragonal zirconia polycrystal ceramic as an effective strategy to significantly decelerate the hydrothermal degradation kinetics, without any loss of mechanical properties, in particular, fracture toughness. Hydrothermal degradation was studied on the exposed surface as well as in the sub-surface region using Raman microspectroscopy, atomic force microscopy and cross-sectional transmission electron microscopy, providing a comprehensive insight into the mechanism of propagation of the t→m transformation. The addition of dopants resulted in the reduction of monoclinic zirconia nucleation rate at the surface and a substantial deceleration of the overall transformation kinetics, in particular a greatly reduced propagation of the transformation into the bulk and decreased grain boundary microcracking. High-resolution transmission electron microscopy analysis showed that the co-dopant cations segregate to the grain boundaries where they play a key role in the stabilization of the zirconia tetragonal phase.


Asunto(s)
Óxido de Aluminio/química , Materiales Biocompatibles/química , Lantano/química , Óxidos/química , Agua/química , Circonio/química , Calor , Ensayo de Materiales , Propiedades de Superficie
6.
Acta Biomater ; 8(6): 2348-59, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22342830

RESUMEN

The performance of total hip-joint replacements depends strongly on the state of lubrication in vivo. In order to test candidate prosthetic materials, in vitro wear testing requires a lubricant that behaves in the same manner as synovial fluid. The current study investigated three lubricants and looked in detail at the lubrication conditions and the consequent effect on ball-on-flat reciprocating wear mechanisms of Biolox®delta against alumina. Biolox®delta, the latest commercial material for artificial hip-joint replacements, is an alumina-matrix composite with improved mechanical properties through the addition of zirconia and other mixed oxides. Three commonly used laboratory lubricants, ultra pure water, 25 vol.% new-born calf serum solution and 1 wt.% carboxymethyl cellulose sodium salt (CMC-Na) solution, were used for the investigation. The lubrication regimes were defined by constructing Stribeck curves. Full fluid-film lubrication was observed for the serum solution whereas full fluid-film and mixed lubrications were observed in both water and the CMC-Na solution. The wear rates in the CMC-Na and new-born calf serum were similar, but were an order of magnitude higher in water. The worn surfaces all exhibited pitting, which is consistent with the transition from mild wear to severe or "stripe" wear. The extent of pitting was greatest in the serum solution, but least in the water. On all worn surfaces, the zirconia appeared to have fully transformed from tetragonal to monoclinic symmetry. However, there was no evidence of microcracking associated with the transformed zirconia. Nevertheless, AFM indicated that zirconia was lost preferentially to the alumina grains during sliding. Thus, the current study has shown conclusively that the wear mechanisms for Biolox®delta clearly depend on the lubricant used, even where wear rates were similar.


Asunto(s)
Fricción , Prótesis de Cadera , Lubrificación , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Propiedades de Superficie
7.
J Nanosci Nanotechnol ; 12(10): 8158-64, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23421194

RESUMEN

The deposition of silver nanoparticles on the surface of silica was carried out using our simple, robust and rapid chemical method without surface modification of silica or added coupling agents. The process was carried out at room temperature using water/methanol mixtures, tetraethyl orthosilicate as Si source and silver nanoparticles (NPs) in a single-pot reaction. Using EDS, XRD, HRTEM and High Angle Annular Dark Field (HAADF) STEM characterization techniques, we have found the coexistence of silver NPs and silver oxides NPs anchored to the surface of sub-micron silica spheres, with Ag NPs predominating sizes around 2-3 nm approximately, and Ag2O NPs sizes over 10 nm.

8.
Ultramicroscopy ; 110(9): 1178-84, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20452124

RESUMEN

This work addresses two major issues relating to Helium Ion Microscopy (HeIM). First we show that HeIM is capable of solving the interpretation difficulties that arise when complex three-dimensional structures are imaged using traditional high lateral resolution techniques which are transmission based, such as scanning transmission electron microscopy (STEM). Secondly we use a nano-composite coating consisting of amorphous carbon embedded in chromium rich matrix to estimate the mean escape depth for amorphous carbon for secondary electrons generated by helium ion impact as a measure of HeIM depth resolution.

9.
J Microsc ; 222(Pt 2): 85-96, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16774517

RESUMEN

The microstructure and crystallographic texture characteristics were studied in a 22Cr-6Ni-3Mo duplex stainless steel subjected to plastic deformation in torsion at a temperature of 1000 degrees C using a strain rate of 1 s(-1). High-resolution EBSD was successfully used for precise phase and substructural characterization of this steel. The austenite/ferrite ratio and phase morphology as well as the crystallographic texture, subgrain size, misorientation angles and misorientation gradients corresponding to each phase were determined over large sample areas. The deformation mechanisms in each phase and the interrelationship between the two are discussed.

10.
J Microsc ; 222(Pt 2): 97-104, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16774518

RESUMEN

High-resolution electron backscatter diffraction has been used to study the effects of strain reversal on the evolution of microbands in commercial purity aluminium alloy AA1200. Deformation was carried out using two equal steps of forward/forward or forward/reverse torsion at a temperature of 300 degrees C and strain rate of 1 s(-1) to a total equivalent tensile strain of 0.5. In both cases, microbands were found in the majority of grains examined with many having microband walls with more than one orientation. For the forward/forward condition, the microband clusters were centred around -20 degrees and +45 degrees to the equivalent tensile stress axis, whereas for material subjected to a strain reversal, the clusters were at -65 degrees and -45 degrees . There was no evidence of microbands that were formed in the forward deformation step in the reversed material, which would suggest that a strain of 0.25 is sufficient to dissolve any microstructure history generated by the first step. Furthermore, the microbands within the strain-reversed material had a reduction in misorientation compared with the lineally strained material, suggesting that these microbands only formed at the onset of the second deformation step. This confirms that microband formation is complex and sensitive to strain path; however, it is still unclear to what extent microband formation is dependent on strain path history compared with the instantaneous deformation mode.

11.
J Microsc ; 217(Pt 2): 138-51, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15683411

RESUMEN

The aim of the present investigation was to determine the orientation dependence of substructure characteristics in an austenitic Fe-30wt%Ni model alloy subjected to hot plane strain compression. Deformation was carried out at a temperature of 950 degrees C using a strain rate of 10 s(-1) to equivalent strain levels of approximately 0.2, 0.4, 0.6 and 0.8. The specimens obtained were analysed using a fully automatic electron backscatter diffraction technique. The crystallographic texture was characterized for all the strain levels studied and the subgrain structure was quantified in detail at a strain of 0.4. The substructure characteristics displayed pronounced orientation dependence. The major texture components, namely the copper, S, brass, Goss and rotated Goss, generally contained one or two prominent families of parallel larger-angle extended subboundaries, the traces of which on the longitudinal viewing plane appeared systematically aligned along the {111} slip plane traces, bounding long microbands subdivided into slightly elongated subgrains by short lower-angle transverse subboundaries. Relatively rare cube-orientated grains displayed pronounced subdivision into coarse deformation bands containing large, low-misorientated subgrains. The misorientation vectors across subboundaries largely showed a tendency to cluster around the sample transverse direction. Apart from the rotated Goss texture component, the stored energy levels for the remaining components were principally consistent with the corresponding Taylor factor values.


Asunto(s)
Aleaciones/química , Hierro/química , Microscopía Electrónica de Rastreo , Níquel/química , Cristalografía , Calor , Estrés Mecánico
12.
J Microsc ; 213(3): 285-95, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15009696

RESUMEN

The evolution of crystallographic texture and deformation substructure was studied in a type 316L austenitic stainless steel, deformed in rolling at 900 degrees C to true strain levels of about 0.3 and 0.7. Electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) were used in the investigation and a comparison of the substructural characteristics obtained by these techniques was made. At the lower strain level, the deformation substructure observed by EBSD appeared to be rather poorly developed. There was considerable evidence of a rotation of the pre-existing twin boundaries from their original orientation relationship, as well as the formation of highly distorted grain boundary regions. In TEM, at this strain level, the substructure was more clearly revealed, although it appeared rather inhomogeneously developed from grain to grain. The subgrains were frequently elongated and their boundaries often approximated to traces of [111] slip planes. The corresponding misorientations were small and largely displayed a non-cumulative character. At the larger strain, the substructure within most grains became well developed and the corresponding misorientations increased. This resulted in better detection of sub-boundaries by EBSD, although the percentage of indexing slightly decreased. TEM revealed splitting of some sub-boundaries to form fine microbands, as well as the localized formation of microshear bands. The substructural characteristics observed by EBSD, in particular at the larger strain, generally appeared to compare well with those obtained using TEM. With increased strain level, the mean subgrain size became finer, the corresponding mean misorientation angle increased and both these characteristics became less dependent on a particular grain orientation. The statistically representative data obtained will assist in the development of physically based models of microstructural evolution during thermomechanical processing of austenitic stainless steels.


Asunto(s)
Microscopía Electrónica , Acero Inoxidable/análisis , Cristalización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA