Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-480177

RESUMEN

Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to evolve carrying flexible amino acid substitutions in the spike proteins receptor binding domain (RBD). These substitutions modify the binding of the SARS-CoV-2 to human angiotensin-converting enzyme 2 (hACE2) receptor and have been implicated in altered host fitness, transmissibility and efficacy against antibody therapeutics and vaccines. Reliably predicting the binding strength of SARS-CoV-2 variants RBD to hACE2 receptor and neutralizing antibodies (NAbs) can help assessing their fitness, and rapid deployment of effective antibody therapeutics, respectively. Here, we introduced a two-step computational framework with three-fold validation that first identified dissociation constant as a reliable predictor of binding affinity in hetero-dimeric and -trimeric protein complexes. The second step implements dissociation constant as descriptor of the binding strengths of SARS-CoV-2 variants RBD to hACE2 and NAbs. Then, we examined several variants of concern (VOCs) such as Alpha, Beta, Gamma, Delta, and Omicron and demonstrated that these VOCs RBD bind to the hACE2 with enhanced affinity. Furthermore, the binding affinity of Omicron variants RBD was reduced with majority of the RBD-directed NAbs, which is highly consistent with the experimental neutralization data. By studying the atomic contacts between RBD and NAbs, we revealed the molecular footprints of four NAbs (GH-12, P2B-1A1, Asarnow_3D11, and C118) -- that may likely neutralize the recently emerged omicron variant -- facilitating enhanced binding affinity. Finally, our findings suggest a computational pathway that could aid researchers identify a range of current NAbs that may be effective against emerging SARS-CoV-2 variants.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-475752

RESUMEN

Understanding the origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a highly debatable and unsolved challenge for the scientific communities across the world. A key to dissect the susceptibility profiles of animal species to SARS-CoV-2 is to understand how virus enters into the cells. The interaction of SARS-CoV-2 ligands (RBD on spike protein) with its host cell receptor, angiotensin-converting enzyme 2 (ACE2), is a critical determinant of host range and cross-species transmission. In this study, we developed and implemented a rigorous computational approach for predicting binding affinity between 299 ACE2 orthologs from diverse vertebrate species and the SARS-CoV-2 spike protein. The findings show that the spike protein of SARS-CoV-2 can bind to many vertebrate species carrying evolutionary divergent ACE2, implying a broad host range at the virus entry level, which may contribute to cross-species transmission and further viral evolution. Additionally, the present study facilitated the identification of genetic determinants that may differentiate susceptible from the resistant host species based on the conservation of ACE2-spike protein interacting residues in vertebrate host species known to facilitate SARS-CoV-2 infection; however, these genetic determinants warrant in vivo experimental confirmation. The molecular interactions associated with varied binding affinity of distinct ACE2 isoforms in a specific bat species were identified using protein structure analysis, implying the existence of diversified susceptibility of bat species to SARS-CoV-2. The findings from current study highlight the importance of intensive surveillance programs aimed at identifying susceptible hosts, particularly those with the potential to transmit zoonotic pathogens, in order to prevent future outbreaks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA