Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 11(8): 8357-8364, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30701957

RESUMEN

High-performance operationally stable organic field-effect transistors were successfully fabricated on a PowerCoat HD 230 paper substrate with a TIPS-pentacene:polystyrene blend as the active layer and poly(4-vinylphenol)/HfO2 as the hybrid gate dielectric. The fabricated devices exhibited excellent p-channel characteristics with a maximum and av field effect mobility of 0.44 and 0.22(±0.11) cm2 V-1 s-1, respectively, av threshold voltage of 0.021(±0.63) V, and current on-off ratio of ∼105 while operating at -10 V. These devices exhibited remarkable stability under effects of gate bias stress and large number of repeated transfer scans with negligible performance spread. In addition, these devices displayed very stable electrical characteristics after long exposure periods to humidity and an excellent shelf life of more than 6 months in ambient environment. Thermal stress at high temperatures however deteriorates the device characteristics because of the generation and propagation of cracks in the active semiconductor crystals. Furthermore, novel paper-based phototransistors have been demonstrated with these devices.

2.
ACS Appl Mater Interfaces ; 9(31): 26226-26233, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28707466

RESUMEN

A unified approach of directional solvent vapor annealing for crystal alignment in solution-processed organic semiconductors is proposed. Highly crystalline molecular self-assembly of the drop-cast technique is further enhanced by postprocessing scheme of the solvent vapor annealing with additional benefit of alignment of the crystalline domains. In this technique, a mixture of carrier gas and solvent vapors are made to flow in a certain direction and in the close proximity of the surface of the substrates carrying the solution. Flow of the carrier gas imparts directionality to the semiconducting crystalline ribbons, whereas the influx of the solvent vapors improves the crystalline order in the semiconducting film. The flow rate of the carrier gas and the position of the substrate in the interaction chamber are the primary regulating factors, which have the ability to provide a semiconducting layer with a well-aligned and interconnected assembly of long ribbons. These favorable film properties further materialize in the form of electrical performance of the corresponding field-effect transistors. The versatility of this technique makes it a viable alternative for the solution processing of organic semiconductors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA