Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Manage ; 68(6): 860-881, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34505927

RESUMEN

AIM: was to assess whether a comprehensive approach linking existing knowledge with monitoring and modeling can provide an improved insight into coastal and marine plastics pollution. We focused on large micro- and mesoplastic (1-25 mm) and selected macroplastic items. Emission calculations, samplings in the Warnow river and estuary (water body and bottom sediments) and a flood accumulation zone monitoring served as basis for model simulations on transport and behavior in the entire Baltic Sea. Considered were the most important pathways, sewage overflow and stormwater. The coastline monitoring together with calculations allowed estimating plastics emissions for Rostock city and the Warnow catchment. Average concentrations at the Warnow river mouth were 0.016 particles/m³ and in the estuary 0.14 particles/m³ (300 µm net). The estuary and nearby Baltic Sea beaches were hot-spots for plastic accumulation with 6-31 particles/m². With increasing distance from the estuary, the concentrations dropped to 0.3 particles/m². This spatial pattern, the plastic pollution gradients and the observed annual accumulation values were consistent with the model results. Indicator items for sewer overflow and stormwater emissions exist, but were only found at low numbers in the environment. The considered visible plastics alone can hardly serve as indicator for microplastic pollution (<1 mm). The use of up-scaled emission data as input for Baltic Sea model simulations provided information on large scale emission, transport and deposition patterns of visible plastics. The results underline the importance of plastic retention in rivers and estuaries.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Estuarios , Ríos , Contaminantes Químicos del Agua/análisis
2.
Ambio ; 48(11): 1362-1376, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31506843

RESUMEN

Aiming to inform both marine management and the public, coupled environmental-climate scenario simulations for the future Baltic Sea are analyzed. The projections are performed under two greenhouse gas concentration scenarios (medium and high-end) and three nutrient load scenarios spanning the range of plausible socio-economic pathways. Assuming an optimistic scenario with perfect implementation of the Baltic Sea Action Plan (BSAP), the projections suggest that the achievement of Good Environmental Status will take at least a few more decades. However, for the perception of the attractiveness of beach recreational sites, extreme events such as tropical nights, record-breaking sea surface temperature (SST), and cyanobacteria blooms may be more important than mean ecosystem indicators. Our projections suggest that the incidence of record-breaking summer SSTs will increase significantly. Under the BSAP, record-breaking cyanobacteria blooms will no longer occur in the future, but may reappear at the end of the century in a business-as-usual nutrient load scenario.


Asunto(s)
Cianobacterias , Ecosistema , Países Bálticos , Cambio Climático , Océanos y Mares , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA