Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Dis ; 91(3): 329, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30780589

RESUMEN

Different strains of Xylella fastidiosa cause a variety of significant disease problems in agricultural and ornamental plants, including Pierce's disease in grapes, oleander leaf scorch, pecan bacterial leaf scorch, and alfalfa dwarf disease. X. fastidiosa has never been reported in New Mexico but is known to exist in surrounding states (California, Arizona, and Texas). During the summer of 2006, several chitalpa (Chitalpa tashkinensis) hybrid trees with leaf scorch symptoms and branch die back were observed in Las Cruces, NM and they tested positive for X. fastidiosa by ELISA. Additional samples from these plants and others were analyzed by ELISA, PCR (2), and cultured on XfD2 medium (1). Known positive and negative oleander samples from Arizona were included as controls. Fifteen of thirty tested chitalpa were PCR and ELISA positive, indicating that they were infected with X. fastidiosa. Bacterial colonies that were PCR positive were also recovered from 10 of the XF positive samples that were plated. DNA sequences of PCR products amplified from chitalpa and isolated bacterial colonies (GenBank Accession Nos. EF109936 and EF109937) were identical to each other, 97% similar to X. fastidiosa strain JB-USNA, and 96% similar to the Temecula 1 strain. Independent ELISA testing (Barry Hill, California Department Food and Agriculture, Sacramento, CA) confirmed our ELISA and PCR results. On the basis of these results, we conclude that X. fastidiosa is present in New Mexico and that the common landscape ornamental chitalpa is a host for X. fastidiosa. Additional work is required to determine if X. fastidiosa is pathogenic to chitalpa and to examine the relevance of this potential X. fastidiosa reservoir to agricultural production in New Mexico and other areas where chitalpa is grown. References: (1) R. P. P. Almeida et al. Curr. Microbiol. 48:368, 2004. (2) M. R. Pooler et al. Lett. Appl. Microbiol. 25:123, 1997.

2.
Plant Cell Rep ; 21(10): 1010-19, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12835912

RESUMEN

An Agrobacterium-mediated transformation system with glyphosate selection has been developed for the large-scale production of transgenic plants. The system uses 4-day precultured immature embryos as explants. A total of 30 vectors containing the 5-enol-pyruvylshikimate-3-phosphate synthase gene from Agrobacterium strain CP4 (aroA:CP4), which confers resistance to glyphosate, were introduced into wheat using this system. The aroA:CP4 gene served two roles in this study-selectable marker and gene of interest. More than 3,000 transgenic events were produced with an average transformation efficiency of 4.4%. The entire process from isolation of immature embryos to production of transgenic plantlets was 50-80 days. Transgenic events were evaluated over several generations based on genetic, agronomic and molecular criteria. Forty-six percent of the transgenic events fit a 3:1 segregation ratio. Molecular analysis confirmed that four of six lead transgenic events selected from Agrobacterium transformation contained a single insert and a single copy of the transgene. Stable expression of theAROA:CP4 gene was confirmed by ELISA through nine generations. A comparison of Agrobacterium-mediated transformation to a particle bombardment system demonstrated that the Agrobacterium system is reproducible, has a higher transformation efficiency with glyphosate selection and produces higher quality transgenic events in wheat. One of the lead events from this study, no. 33391, has been identified as a Roundup Ready wheat commercial candidate.


Asunto(s)
Glicina/análogos & derivados , Glicina/farmacología , Rhizobium/genética , Transformación Genética , Triticum/efectos de los fármacos , Triticum/genética , Biolística , Southern Blotting , Expresión Génica , Herbicidas/farmacología , Plantas Modificadas Genéticamente , Regeneración , Selección Genética , Transgenes/genética , Glifosato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA