Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 7(5): e38438, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22675463

RESUMEN

Fibroblast growth factors 19 (FGF19) and 21 (FGF21) have emerged as key regulators of energy metabolism. Several studies have been conducted to understand the mechanism of FGF19 and FGF21 action, however, the data presented has often been inconsistent and at times contradictory. Here in a single study we compare the mechanisms mediating FGF19/FGF21 actions, and how similarities/differences in actions at the cellular level between these two factors translate to common/divergent physiological outputs. Firstly, we show that in cell culture FGF19/FGF21 are very similar, however, key differences are still observed differentiating the two. In vitro we found that both FGF's activate FGFRs in the context of ßKlotho (KLB) expression. Furthermore, both factors alter ERK phosphorylation and glucose uptake with comparable potency. Combination treatment of cells with both factors did not have additive effects and treatment with a competitive inhibitor, the FGF21 delta N17 mutant, also blocked FGF19's effects, suggestive of a shared receptor activation mechanism. The key differences between FGF21/FGF19 were noted at the receptor interaction level, specifically the unique ability of FGF19 to bind/signal directly via FGFR4. To determine if differential effects on energy homeostasis and hepatic mitogenicity exist we treated DIO and ob/ob mice with FGF19/FGF21. We find comparable efficacy of the two proteins to correct body weight and serum glucose in both DIO and ob/ob mice. Nevertheless, FGF21 and FGF19 had distinctly different effects on proliferation in the liver. Interestingly, in vivo blockade of FGF21 signaling in mice using ΔN17 caused profound changes in glycemia indicative of the critical role KLB and FGF21 play in the regulation of glucose homeostasis. Overall, our data demonstrate that while subtle differences exist in vitro the metabolic effects in vivo of FGF19/FGF21 are indistinguishable, supporting a shared mechanism of action for these two hormones in the regulation of energy balance.


Asunto(s)
Factores de Crecimiento de Fibroblastos/farmacología , Animales , Peso Corporal/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Factores de Crecimiento de Fibroblastos/administración & dosificación , Glucuronidasa/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Proteínas Klotho , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/efectos de los fármacos
2.
Med Chem ; 7(6): 718-26, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22313312

RESUMEN

Nicotinamide adenine dinucleotide (NAD+) is synthesized by the action of nicotinamide mononucleotide adenylyltransferase (NMNAT) from NMN and ATP. The mouse homolog of NMNAT-2 (mmNMNAT-2) was cloned, expressed, and subsequently identified using MALDI-TOF in conjunction with the ProFound database. Circular dichroism analyses of recombinant mmNMNAT-2 showed α helical and ß sheet secondary structures, consistent with the known structure of the human isoform. Competition experiments using mouse pancreatic tissue lysates with recombinant mmNMNAT-2 demonstrated that the activity of the expressed protein was similar to the human isoform. Immunohistochemistry of mouse embryonic tissues with hNMNAT-2 also showed a tissue- and cellular-specific expression of this isoform. Therefore, our studies demonstrate for the first time the clear biological evidence for the existence of a mouse isoform of hNMNAT-2. These studies may help in future investigations aimed at understanding the regulation of this gene and its pathway, and in turn, will spur the development of novel therapies for diseases such as cancer and diabetes since mice are the most frequently used experimental system for in vivo studies.


Asunto(s)
Clonación Molecular , Nicotinamida-Nucleótido Adenililtransferasa/genética , Animales , Dicroismo Circular , Humanos , Inmunohistoquímica , Ratones , NAD/biosíntesis , NAD/química , Nicotinamida-Nucleótido Adenililtransferasa/química , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
3.
J Cell Physiol ; 219(2): 227-34, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19117008

RESUMEN

Fibroblast growth factor 21 is a member of endocrine FGFs subfamily, along with FGF19 and FGF23. It is emerging as a novel regulator with beneficial effects on a variety of metabolic parameters, including glucose and lipid control. FGF21 activity depends on membrane protein betaKlotho that physically complexes with various FGF receptors, thus conferring them the ability to bind FGF21 and activate downstream signaling pathways. FGF21, like other FGFs, folds to a beta-trefoil-like core region, with disordered N- and C-termini. In order to investigate their role in the activity of FGF21, we have constructed a series of deletion mutants and tested them for their ability to (1) bind betaKlotho, analyzed by surface plasmon resonance spectroscopy (2) signal through MAPK phosphorylation and inhibit apoptosis in 3T3-L1/betaKlotho fibroblasts (3) stimulate GLUT1 mRNA upregulation and glucose uptake in 3T3-L1 adipocytes. Binding studies with betaKlotho revealed that the interaction with the co-receptor involves the C-terminus, as progressive removal of amino acids from the carboxy end decreased affinity for betaKlotho. By contrast, removal of up to 17 amino acids from the N-terminus had no effect on the interaction with betaKlotho. Terminal deletions had greater effect on function, as deletions of six amino acids from the amino-terminus and only four from the carboxy-terminus each significantly impacted activity (10-fold). Of the extreme terminal truncations, with no detectable activity, DeltaN17 acted as competitive antagonist while DeltaC20 did not. Our structure/function studies show that the C-terminus is important for betaKlotho interaction whereas the N-terminus likely interacts directly with FGF receptors.


Asunto(s)
Factores de Crecimiento de Fibroblastos/química , Factores de Crecimiento de Fibroblastos/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Células 3T3 , Adipocitos/citología , Adipocitos/fisiología , Animales , Apoptosis/fisiología , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Fibroblastos/citología , Fibroblastos/fisiología , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Proteínas Klotho , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA