Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
BMC Ecol Evol ; 23(1): 48, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37679675

RESUMEN

BACKGROUND: Dipsadine snakes represent one of the most spectacular vertebrate radiations that have occurred in any continental setting, with over 800 species in South and Central America. Their species richness is paralleled by stunning ecological diversity, ranging from arboreal snail-eating and aquatic eel-eating specialists to terrestrial generalists. Despite the ecological importance of this clade, little is known about the extent to which ecological specialization shapes broader patterns of phenotypic diversity within the group. Here, we test how habitat use and diet have influenced morphological diversification in skull shape across 160 dipsadine species using micro-CT and 3-D geometric morphometrics, and we use a phylogenetic comparative approach to test the contributions of habitat use and diet composition to variation in skull shape among species. RESULTS: We demonstrate that while both habitat use and diet are significant predictors of shape in many regions of the skull, habitat use significantly predicts shape in a greater number of skull regions when compared to diet. We also find that across ecological groupings, fossorial and aquatic behaviors result in the strongest deviations in morphospace for several skull regions. We use simulations to address the robustness of our results and describe statistical anomalies that can arise from the application of phylogenetic generalized least squares to complex shape data. CONCLUSIONS: Both habitat and dietary ecology are significantly correlated with skull shape in dipsadines; the strongest relationships involved skull shape in snakes with aquatic and fossorial lifestyles. This association between skull morphology and multiple ecological axes is consistent with a classic model of adaptive radiation and suggests that ecological factors were an important component in driving morphological diversification in the dipsadine megaradiation.


Asunto(s)
Cabeza , Cráneo , Humanos , Filogenia , América Central , Confusión
3.
Curr Biol ; 24(8): 910-6, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24704078

RESUMEN

The tempo of species diversification in large clades can reveal fundamental evolutionary mechanisms that operate on large temporal and spatial scales. Hummingbirds have radiated into a diverse assemblage of specialized nectarivores comprising 338 species, but their evolutionary history has not, until now, been comprehensively explored. We studied hummingbird diversification by estimating a time-calibrated phylogeny for 284 hummingbird species, demonstrating that hummingbirds invaded South America by ∼22 million years ago, and subsequently diversified into nine principal clades (see [5-7]). Using ancestral state reconstruction and diversification analyses, we (1) estimate the age of the crown-group hummingbird assemblage, (2) investigate the timing and patterns of lineage accumulation for hummingbirds overall and regionally, and (3) evaluate the role of Andean uplift in hummingbird speciation. Detailed analyses reveal disparate clade-specific processes that allowed for ongoing species diversification. One factor was significant variation among clades in diversification rates. For example, the nine principal clades of hummingbirds exhibit ∼15-fold variation in net diversification rates, with evidence for accelerated speciation of a clade that includes the Bee, Emerald, and Mountain Gem groups of hummingbirds. A second factor was colonization of key geographic regions, which opened up new ecological niches. For example, some clades diversified in the context of the uplift of the Andes Mountains, whereas others were affected by the formation of the Panamanian land bridge. Finally, although species accumulation is slowing in all groups of hummingbirds, several major clades maintain rapid rates of diversification on par with classical examples of rapid adaptive radiation.


Asunto(s)
Distribución Animal , Biodiversidad , Aves/genética , Evolución Molecular , Especiación Genética , Filogenia , Animales , Secuencia de Bases , Teorema de Bayes , Geografía , Modelos Genéticos , Datos de Secuencia Molecular , América del Norte , Análisis de Secuencia de ADN , América del Sur , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA