Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Am J Physiol Endocrinol Metab ; 325(5): E480-E490, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37729026

RESUMEN

White, beige, and brown adipose tissues play a crucial role in maintaining energy homeostasis. Due to the heterogeneous and diffuse nature of fat pads, this balance requires a fine and coordinated control of many actors and therefore permanent dialogues between these tissues and the central nervous system. For about two decades, many studies have been devoted to describe the neuro-anatomical and functional complexity involved to ensure this dialogue. Thus, if it is now clearly demonstrated that there is an efferent sympathetic innervation of different fat depots controlling plasticity as well as metabolic functions of the fat pad, the crucial role of sensory innervation capable of detecting local signals informing the central nervous system of the metabolic state of the relevant pads is much more recent. The purpose of this review is to provide the current state of knowledge on this subject.


Asunto(s)
Tejido Adiposo Pardo , Tejido Adiposo , Humanos , Tejido Adiposo/metabolismo , Tejido Adiposo Pardo/metabolismo , Obesidad/metabolismo , Sistema Nervioso Simpático , Homeostasis , Adiposidad , Termogénesis , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Beige/metabolismo
2.
NPJ Regen Med ; 6(1): 63, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34650070

RESUMEN

Tissue repair after injury in adult mammals, usually results in scarring and loss of function in contrast to lower vertebrates such as the newt and zebrafish that regenerate. Understanding the regulatory processes that guide the outcome of tissue repair is therefore a concerning challenge for regenerative medicine. In multiple regenerative animal species, the nerve dependence of regeneration is well established, but the nature of the innervation required for tissue regeneration remains largely undefined. Using our model of induced adipose tissue regeneration in adult mice, we demonstrate here that nociceptive nerves promote regeneration and their removal impairs tissue regeneration. We also show that blocking the receptor for the nociceptive neuropeptide calcitonin gene-related peptide (CGRP) inhibits regeneration, whereas CGRP administration induces regeneration. These findings reveal that peptidergic nociceptive neurons are required for adult mice tissue regeneration.

3.
NPJ Regen Med ; 6(1): 41, 2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344890

RESUMEN

Tissue repair after lesion usually leads to scar healing and thus loss of function in adult mammals. In contrast, other adult vertebrates such as amphibians have the ability to regenerate and restore tissue homeostasis after lesion. Understanding the control of the repair outcome is thus a concerning challenge for regenerative medicine. We recently developed a model of induced tissue regeneration in adult mice allowing the comparison of the early steps of regenerative and scar healing processes. By using studies of gain and loss of function, specific cell depletion approaches, and hematopoietic chimeras we demonstrate here that tissue regeneration in adult mammals depends on an early and transient peak of granulocyte producing reactive oxygen species and an efficient efferocytosis specifically by tissue-resident macrophages. These findings highlight key and early cellular pathways able to drive tissue repair towards regeneration in adult mammals.

4.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34298954

RESUMEN

Opioids are regarded as among the most effective analgesic drugs and their use for the management of pain is considered standard of care. Despite their systematic administration in the peri-operative period, their impact on tissue repair has been studied mainly in the context of scar healing and is only beginning to be documented in the context of true tissue regeneration. Indeed, in mammals, growing evidence shows that opioids direct tissue repair towards scar healing, with a loss of tissue function, instead of the regenerative process that allows for recovery of both the morphology and function of tissue. Here, we review recent studies that highlight how opioids may prevent a regenerative process by silencing nociceptive nerve activity and a powerful anti-inflammatory effect. These data open up new perspectives for inducing tissue regeneration and argue for opioid-restricted strategies for managing pain associated with tissue injury.


Asunto(s)
Analgésicos Opioides/uso terapéutico , Manejo del Dolor , Dolor/tratamiento farmacológico , Cicatrización de Heridas/efectos de los fármacos , Animales , Humanos , Dolor/metabolismo , Dolor/patología
5.
Sci Rep ; 8(1): 12170, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30111876

RESUMEN

Inhibition of regeneration and induction of tissue fibrosis are classic outcomes of tissue repair in adult mammals. Here, using a newly developed model of regeneration in adult mammals i.e. regeneration after massive resection of an inguinal fat pad, we demonstrate that both endogenous and exogenous opioids prevent tissue regeneration in adults, by inhibiting the early production of reactive oxygen species (ROS) that generally occurs after lesion and is required for regeneration. These effects can be overcome and regeneration induced by the use of an opioid antagonist. The results obtained in both our new model and the gold standard adult zebrafish demonstrate that this mechanism can be considered as a general paradigm in vertebrates. This work clearly demonstrates that ROS is required for tissue regeneration in adult mammals and shows the deleterious effect of opioids on tissue regeneration through the control of this ROS production. It thus raises questions about opioid-based analgesia in perioperative care.


Asunto(s)
Analgésicos Opioides/farmacología , Regeneración/efectos de los fármacos , Tejido Adiposo/patología , Analgésicos Opioides/metabolismo , Aletas de Animales , Animales , Femenino , Fibrosis/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos MRL lpr , Miocitos Cardíacos/patología , Naloxona/análogos & derivados , Naloxona/farmacología , Compuestos de Amonio Cuaternario/farmacología , Especies Reactivas de Oxígeno/metabolismo , Regeneración/fisiología , Tramadol/farmacología , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA