Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 103(14): 140401, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19905548

RESUMEN

We investigate experimentally the entropy transfer between two distinguishable atomic quantum gases at ultralow temperatures. Exploiting a species-selective trapping potential, we are able to control the entropy of one target gas in presence of a second auxiliary gas. With this method, we drive the target gas into the degenerate regime in conditions of controlled temperature by transferring entropy to the auxiliary gas. We envision that our method could be useful both to achieve the low entropies required to realize new quantum phases and to measure the temperature of atoms in deep optical lattices. We verified the thermalization of the two species in a 1D lattice.

2.
Phys Rev Lett ; 103(4): 043201, 2009 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-19659348

RESUMEN

Building on the recent experimental observation with ultracold atoms, we report the first experimental evidence of Efimov physics in a heteronuclear system. A mixture of ;{41}K and ;{87}Rb atoms was cooled to few hundred nanokelvins and stored in an optical dipole trap. Exploiting a broad interspecies Feshbach resonance, the losses due to three-body collisions were studied as a function of the interspecies scattering length. We observe an enhancement of the three-body collisions for three distinct values of the interspecies scattering lengths, both positive and negative, where no Feshbach resonances are expected. We attribute the two features at negative scattering length to the existence of two kinds of Efimov trimers, KKRb and KRbRb.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA