Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
World J Microbiol Biotechnol ; 39(12): 346, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37843644

RESUMEN

Itaconic acid is an important bio-based chemical. The present study aims to evaluate the applicability of semi-continuous fermentation technique for itaconic acid production by Aspergillus terreus. The fermentation is planned to be connected with bipolar membrane electrodialysis unit for acid recovery. This process allows the reuse of residual glucose from the effluent. Our particular attention was focused on the effect of glucose concentration. Two different glucose supplementation strategies were tested: constant glucose concentration in the refilling medium and adjusted glucose concentration in order to maintain a continuously high - 120 g/L - glucose concentration in the fermentor. The itaconic acid titre, yield and productivity for the 24 h time periods between draining/refilling interventions were investigated. The constantly high glucose concentration in the fermentor resulted in doubled biomass formation. The average itaconic acid titre was 32.9 ± 2.7 g/L. The producing strain formed numerous spores during semi-continuous fermentation that germinated continuously. Yield and volumetric productivity showed a periodic pattern during the procedure.


Asunto(s)
Aspergillus , Succinatos , Fermentación , Glucosa
2.
Bioresour Technol ; 333: 125153, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33866075

RESUMEN

In this work, a novel cation exchange membrane, PSEBS SU22 was deployed in microbial fuel cells (MFCs) to examine system efficacy in line with membrane characteristics and inoculum source. It turned out that compared to a reference membrane (Nafion), employing PSEBS SU22 resulted in higher current density and electricity generation kinetics, while the electron recoveries were similar (19-28%). These outcomes indicated more beneficial ion transfer features and lower mass transfer-related losses in the PSEBS SU22-MFCs, supported by membrane water uptake, ion exchange capacity, ionic conductivity and permselectivity. By re-activating the membranes after (bio)foulant removal, PSEBS SU22 regained nearly its initial conductivity, highlighting a salient functional stability. Although the particular inoculum showed a clear effect on the microbial composition of the membrane biofouling layers, the dominance of aerobic species was revealed in all cases. Considering all the findings, the PSEBS SU22 seems to be promising for application in MFCs.


Asunto(s)
Fuentes de Energía Bioeléctrica , Incrustaciones Biológicas , Alquenos , Cationes , Electricidad , Electrodos , Etilenos , Polietileno , Poliestirenos
3.
Membranes (Basel) ; 10(1)2020 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-31963734

RESUMEN

Membrane separators are key elements of microbial fuel cells (MFCs), especially of those constructed in a dual-chamber configuration. Until now, membranes made of Nafion have been applied the most widely to set-up MFCs. However, there is a broader agreement in the literature that Nafion is expensive and in many cases, does not meet the actual (mainly mass transfer-specific) requirements demanded by the process and users. Driven by these issues, there has been notable progress in the development of alternative materials for membrane fabrication, among which those relying on the deployment of ionic liquids are emerging. In this review, the background of and recent advances in ionic liquid-containing separators, particularly supported ionic liquid membranes (SILMs), designed for MFC applications are addressed and evaluated. After an assessment of the basic criteria to be fulfilled by membranes in MFCs, experiences with SILMs will be outlined, along with important aspects of transport processes. Finally, a comparison with the literature is presented to elaborate on how MFCs installed with SILM perform relative to similar systems assembled with other, e.g., Nafion, membranes.

4.
Bioresour Technol ; 279: 327-338, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30765113

RESUMEN

The scope of the review is to discuss the current state of knowledge and lessons learned on biofouling of membrane separators being used for microbial electrochemical technologies (MET). It is illustrated what crucial membrane features have to be considered and how these affect the MET performance, paying particular attention to membrane biofouling. The complexity of the phenomena was demonstrated and thereby, it is shown that membrane qualities related to its surface and inherent material features significantly influence (and can be influenced by) the biofouling process. Applicable methods for assessment of membrane biofouling are highlighted, followed by the detailed literature evaluation. Finally, an outlook on e.g. possible mitigation strategies for membrane biofouling in MET is provided.


Asunto(s)
Incrustaciones Biológicas , Biopelículas , Técnicas Electroquímicas
5.
Bioresour Technol ; 259: 75-82, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29536877

RESUMEN

The purpose of this research was to improve microbial fuel cell (MFC) performance - treating landfill-derived waste liquor - by applying effluents of various biogas fermenters as inocula. It turned out that the differences of initial microbial community profiles notably influenced the efficiency of MFCs. In fact, the adaptation time (during 3 weeks of operation) has varied significantly, depending on the source of inoculum and accordingly, the obtainable cumulative energy yields were also greatly affected (65% enhancement in case of municipal wastewater sludge inoculum compared to sugar factory waste sludge inoculum). Hence, it could be concluded that the capacity of MFCs to utilize the complex feedstock was heavily dependent on biological factors such as the origin/history of inoculum, the microbial composition as well as proper acclimation period. Therefore, these parameters should be of primary concerns for adequate process design to efficiently generate electricity with microbial fuel cells.


Asunto(s)
Fuentes de Energía Bioeléctrica , Reactores Biológicos , Biocombustibles , Electricidad , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales
6.
Bioresour Technol ; 251: 381-389, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29295757

RESUMEN

Microbial electrohydrogenesis cells (MECs) are devices that have attracted significant attention from the scientific community to generate hydrogen gas electrochemically with the aid of exoelectrogen microorganisms. It has been demonstrated that MECs are capable to deal with the residual organic materials present in effluents generated along with dark fermentative hydrogen bioproduction (DF). Consequently, MECs stand as attractive post-treatment units to enhance the global H2 yield as a part of a two-stage, integrated application (DF-MEC). In this review article, it is aimed (i) to assess results communicated in the relevant literature on cascade DF-MEC systems, (ii) describe the characteristics of each steps involved and (iii) discuss the experiences as well as the lessons in order to facilitate knowledge transfer and help the interested readers with the construction of more efficient coupled set-ups, leading eventually to the improvement of overall biohydrogen evolution performances.


Asunto(s)
Fuentes de Energía Bioeléctrica , Fermentación , Electrólisis , Hidrógeno
7.
Chemosphere ; 171: 692-701, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28061427

RESUMEN

In this paper, the anaerobic treatment of a high organic-strength wastewater-type feedstock, referred as the liquid fraction of pressed municipal solid waste (LPW) was studied for energy recovery and organic matter removal. The processes investigated were (i) dark fermentation to produce biohydrogen, (ii) anaerobic digestion for biogas formation and (iii) microbial fuel cells for electrical energy generation. To find a feasible alternative for LPW treatment (meeting the two-fold aims given above), various one- as well as multi-stage processes were tested. The applications were evaluated based on their (i) COD removal efficiencies and (ii) specific energy gain. As a result, considering the former aspect, the single-stage processes could be ranked as: microbial fuel cell (92.4%)> anaerobic digestion (50.2%)> hydrogen fermentation (8.8%). From the latter standpoint, an order of hydrogen fermentation (2277 J g-1 CODremoved d-1)> anaerobic digestion (205 J g-1 CODremoved d-1)> microbial fuel cell (0.43 J g-1 CODremoved d-1) was attained. The assessment showed that combined, multi-step treatment was necessary to simultaneously achieve efficient organic matter removal and energy recovery from LPW. Therefore, a three-stage system (hydrogen fermentation-biomethanation-bioelectrochemical cell in sequence) was suggested. The different approaches were characterized via the estimation of COD balance, as well.


Asunto(s)
Fuentes de Energía Bioeléctrica , Reactores Biológicos , Fermentación , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Biocombustibles/análisis , Hidrógeno/análisis , Metano/análisis , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA