Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nature ; 527(7577): 216-20, 2015 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-26560299

RESUMEN

Porous solids such as zeolites and metal-organic frameworks are useful in molecular separation and in catalysis, but their solid nature can impose limitations. For example, liquid solvents, rather than porous solids, are the most mature technology for post-combustion capture of carbon dioxide because liquid circulation systems are more easily retrofitted to existing plants. Solid porous adsorbents offer major benefits, such as lower energy penalties in adsorption-desorption cycles, but they are difficult to implement in conventional flow processes. Materials that combine the properties of fluidity and permanent porosity could therefore offer technological advantages, but permanent porosity is not associated with conventional liquids. Here we report free-flowing liquids whose bulk properties are determined by their permanent porosity. To achieve this, we designed cage molecules that provide a well-defined pore space and that are highly soluble in solvents whose molecules are too large to enter the pores. The concentration of unoccupied cages can thus be around 500 times greater than in other molecular solutions that contain cavities, resulting in a marked change in bulk properties, such as an eightfold increase in the solubility of methane gas. Our results provide the basis for development of a new class of functional porous materials for chemical processes, and we present a one-step, multigram scale-up route for highly soluble 'scrambled' porous cages prepared from a mixture of commercially available reagents. The unifying design principle for these materials is the avoidance of functional groups that can penetrate into the molecular cage cavities.

2.
Membranes (Basel) ; 5(2): 214-27, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-26030881

RESUMEN

High free-volume copolymers were prepared via polycondensation with 2,3,5,6,-tetrafluoroterephthalonitrile (TFTPN) in which a portion of the 3,3,3',3'-tetramethyl-1,1'-spirobisindane (TTSBI) of PIM-1 was replaced with dibutyl anthracene maleimide (4bIII). An investigation of free volume using positron annihilation lifetime spectroscopy (PALS), and gas permeation measurements was carried out for the thin film composite copolymer membranes and compared to PIM-1. The average free volume hole size and the gas permeance of the copolymer membranes increased with decreasing TTSBI content in the copolymer.

3.
Phys Rev Lett ; 113(16): 165901, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25361269

RESUMEN

We report (95)Zr and (57)Co radiotracer diffusivities and viscosity data in the equilibrium liquid state of a bulk metallic glass forming Zr(46.75)Ti(8.25)Cu(7.5)Ni(10)Be(27.5) melt (Vitreloy 4) far above the liquidus temperature T(l) that are not affected by convection, as evidenced via quasielastic neutron scattering. Zr diffusion is strongly decoupled from diffusion of the smaller components by more than a factor of 4 at T(l), although it obeys the Stokes-Einstein equation. The results suggest that, in the present Zr-based metallic glass forming systems, diffusion and viscous flow start to develop solidlike, i.e., energy-landscape-controlled, features already in the stable liquid state more than 300 K above the mode coupling temperature T(c).

4.
Phys Rev Lett ; 104(19): 195901, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-20866980

RESUMEN

We report radiotracer diffusivities in a Pd43Cu27Ni10P20 melt, presenting for the first time a complete set of data for all components over the whole relevant temperature range. While a vast decoupling of more than 4 orders of magnitude is observed between the diffusivity of Pd and of the smaller components, at the glass transition temperature Tg, the diffusivities of all components merge close to the critical temperature Tc of mode coupling theory. For Pd, the Stokes-Einstein relation holds in the whole range investigated encompassing more than 14 orders of magnitude suggesting the formation of a slow subsystem as a key to glass formation in systems with dynamic asymmetry.

5.
Eur J Pharm Sci ; 41(2): 388-98, 2010 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-20638474

RESUMEN

Positron annihilation lifetime spectroscopy (PALS), a method well established for the study of polymers, is employed to characterize the temperature dependence of the free volume through T(g) in the amorphous pharmaceutical Verapamil hydrochloride. From the PALS spectra analyzed with the routine LifeTime9.0 the size (volume) distribution of local free volumes (subnanometre-size holes), its mean, v(h), and mean dispersion, sigma(h), were calculated. A comparison with the macroscopic volume from PVT-experiments delivered the hole density and the hole free volume fraction and in that way a complete characterization of the free volume microstructure. These data are used in correlation with structural (alpha-) relaxation data from broad-band dielectric spectroscopy in terms of the Cohen-Turnbull free volume model. An extension of this model, distinctions in the free volume behaviour of the glassy and supercooled-liquid state and different ways of extrapolating the equilibrium part of the free volume into the temperature range of the glass are discussed. The potential of the PALS method for the study of pharmaceuticals is briefly reviewed and some recently developed applications (analysis of density fluctuations) are illuminated.


Asunto(s)
Bloqueadores de los Canales de Calcio/química , Nanopartículas , Análisis Espectral/métodos , Verapamilo/química , Tamaño de la Partícula
6.
Acta Biomater ; 6(7): 2690-4, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20045088

RESUMEN

Barnacles attach to a wide variety of surfaces underwater and show substrate-specific adhesion mechanisms. Investigating and understanding these mechanisms is a key for developing new technical adhesives. We expected open volume (porosity) at the sub-nanometre scale to occur in barnacle adhesive. With positron annihilation lifetime spectroscopy (PALS) it is possible to detect porosity at the nanometre scale by determining the lifetime of positrons. This method has not been applied to bioadhesives so far. We showed that PALS is a suitable technique for the investigation of the barnacle base and its adhesive with respect to open volume. The results were interpreted using a standard model adapted from polymers. We thereby estimated pore sizes of 0.5 nm.


Asunto(s)
Análisis Espectral/métodos , Adhesivos Tisulares , Animales , Thoracica/química
7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(5 Pt 1): 051505, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19113134

RESUMEN

Positron annihilation lifetime spectroscopy (PALS) was used to study the microstructure of the free volume in the temperature range between 103 K and 393 K in phenylphthalein-dimethylether (PDE), a low-molecular-weight glass former. Using the routine LIFETIME9.0, the ortho-positronium (o-Ps) lifetime distribution was analyzed, and from this, the volume distribution gn(vh) of subnanometer-size holes was calculated. From a comparison of PALS and specific volume data, the number density and the volume fraction of holes were estimated. These free-volume data, as a function of temperature, were used to test the validity of the Cohen-Turnbull (CT) free-volume theory. It was found that the structural relaxation from dielectric spectroscopy can be described by the CT theory after introducing a corrected free volume (Vf-DeltaV), where DeltaV=0.014 cm3/g. The extended free-volume theory of Cohen and Grest can be fitted to the dielectric-relaxation and free-volume data, but the parameters of both fits are not consistent. PDE shows some peculiar features. The "knee" in the o -Ps lifetime expansion and crossover in temperature dependence of the frequency of the primary dielectric relaxation process occur at different temperatures. In addition, the change in the Vogel-Fulcher-Tammann parameters at TB/Tg=1.1 has no observable effect on the mean free volume vh (or Vf). The size of the smallest representative freely fluctuating subsystem, VSV estimated from the standard deviation sigmah of gn(vh), decreases from 4.1 nm3 to 2.6 nm3 when the temperature increases from T/Tg=1.0 to 1.15. Correspondingly, the length of dynamic heterogeneity, xi=VVS1/3, decreases from 1.6 nm to 1.4 nm. It is concluded that at T/Tg approximately 1.10=TB/Tg the system transforms from a heterogeneous to a homogeneous (true) liquid.

8.
J Phys Chem B ; 111(50): 13914-8, 2007 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-18044865

RESUMEN

PPO (poly(2,6-dimethyl-1,4-phenylene oxide)) is a well-known membrane material showing good gas separation properties. The incorporation of nanoparticles can enhance or deteriorate the performance of composite membranes, sometimes depending only on the way of the composite preparation. We have modified the PPO polymer with C60 fullerenes up to a content of 2 wt %. Previous investigations showed a strong dependence of permeability on whether the C60 is simply dispersed in the polymer or chemically bonded to the polymer chains. Free volume effects were suggested as an explanation but not experimentally confirmed. Here, we present free volume studies by positron annihilation lifetime spectroscopy. An additional long positron lifetime shows the increased free volume of composite samples, while the high electron affinity of C60 helps to indicate the homogeneity of the samples. Combining the presented results with permeability measurements refines the understanding of this promising membrane material.

9.
Phys Rev Lett ; 90(19): 195502, 2003 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-12785954

RESUMEN

According to mode coupling theory, liquidlike motion becomes frozen at a critical temperature T(c) well above the caloric glass transition temperature T(g). Here, for the first time, we report on radiotracer diffusion in a supercooled Pd43Cu27Ni10P20 alloy from T(g) to the equilibrium melt. Liquidlike motion is seen to set in exactly above T(c) as evidenced by a gradual drop of the effective activation energy. This strongly supports the mode coupling scenario. Isotope effect measurements, which have never been carried out near T(c) in any material, show atomic transport up to the equilibrium melt to be far away from the hydrodynamic regime of uncorrelated binary collisions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA