Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pestic Biochem Physiol ; 193: 105448, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37248017

RESUMEN

Indiscriminate uses of insecticide greatly damage the environment as well as non-target organisms. Thus, multiple levels of bioassays can help better management of our environment. Flubendiamide is a phthalic acid diamide insecticide that ceases the function of insect muscle leading to paralysis and death. Here, we aimed to explore the effects of Flubendiamide on the life cycle of Spodoptera litura vis-a-vis the mode of action. Fourth instar larvae of the same age (120 ± 2 h) and size were fed with different concentrations (20-80 µg/mL) of Flubendiamide for 12-72 h. We performed a pharmacokinetics study, different biochemical assays, p450, Ecdysone receptor (EcR) and other genes expression analyses by Real-Time PCR and gross damages by Dye exclusion assay and histopathology. Our results demonstrate that the mean concentration of Flubendiamide after 48 h is 9.907 µg/mL and (i) altered the molting, metamorphosis, and reproduction at 80 µg/mL (24 h) (ii) increases all oxidative stress parameters (ROS/RNS, MDA, 8OHdG), decreases oxidative defense mechanisms (SOD, CAT, GST) at 80 µg/mL (48 h) and p450 in a time and concentration-dependent manner, (iii) activates CncC/Maf apoptotic pathways at 80 µg/mL concentration at 24 h while the expression declined from 48 h onwards, (iii) downregulates the EcR expression in a time and concentration-dependent manner, which might be responsible for disturbed molting, metamorphosis, and reproduction, and (iv) increase the expression of apoptotic genes (Caspase 1, -3, and - 5), in time and concentration-dependent manner causing gross morphological and histological damages. In conclusion, indiscriminate use of this insecticide can affect the ecosystem and have the capacity to cause multiple hazardous effects on experimental organisms. Thus, it warrants further investigations to improve and optimize the integrated pest management packages, including Flubendiamide for better management.


Asunto(s)
Insecticidas , Animales , Insecticidas/toxicidad , Insecticidas/metabolismo , Spodoptera , Ecosistema , Estadios del Ciclo de Vida , Larva
2.
J Biomol Struct Dyn ; 41(24): 14797-14811, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37021366

RESUMEN

Aflatoxin B1 (AFB1), a potent mutagen, is synthesized by Aspergillus parasiticus and Aspergillus flavus. Human serum albumin (HSA) is a globular protein with diverse roles. As AFB1 is ingested with food and is transported in the body via blood, it becomes pertinent to comprehend the effect of the binding of this toxin on the structure and conformation of HSA, which may help to get insight into the toxic effect of the exposure of the mycotoxin. In this study, multi-spectroscopic approaches have been used to evaluate the binding efficiency of AFB1 with both the native HSA (nHSA) and the glycated HSA (gHSA). Steady-state fluorescence spectroscopy reveals the static type of fluorescence quenching in the fluorescence emission spectra of nHSA and gHSA in the presence of AFB1. The binding constant (Kb) is calculated to be 6.88 × 104 M-1 for nHSA, while a reduced Kb value of 2.95 × 104 M-1 has been obtained for gHSA. The circular dichroism study confirms the change in the secondary structure of nHSA and gHSA in the presence of AFB1, followed by alterations in the melting temperature (Tm) of nHSA and gHSA. In silico computational findings envisaged the amino acid residues and bonds involved in the binding of nHSA and gHSA with AFB1. The comprehensive study analyzes the binding effectiveness of AFB1 with nHSA and gHSA and shows reduced binding of AFB1 to gHSA.Communicated by Ramaswamy H. Sarma.


As revealed by UV-absorption spectroscopy, the hyperchromic effect was more prominent in nHSA than gHSA in the presence of AFB1.The binding constant (Kb) obtained for the nHSA-AFB1 complex was 6.88 × 104 M−1, and the gHSA-AFB1 complex yielded Kb value of 2.95 × 104 M−1.Negative enthalpy change (ΔH) and entropy change (ΔS) suggested hydrogen bonding and van der Waals interaction as stabilizing forces of nHSA-AFB1 and gHSA-AFB1 complex.Site markers displacement assay suggested Sudlow's site I as the binding site for AFB1 in nHSA and gHSA.Circular dichroism study showed that AFB1 induced secondary structural changes in nHSA and gHSA.Melting temperature (Tm) increased in nHSA and decreased in gHSA in the presence of AFB1.Molecular docking results confirmed Lys-195, Arg-222 and Arg-257 as hydrogen bonding residues in the nHSA-AFB1 complex and Arg-222 and Lys-199 residues were involved in hydrogen bonding in the gHSA-AFB1 complex.


Asunto(s)
Aflatoxina B1 , Albúmina Sérica Humana , Humanos , Albúmina Sérica Humana/química , Aflatoxina B1/metabolismo , Reacción de Maillard , Sitios de Unión , Espectrometría de Fluorescencia , Dicroismo Circular , Unión Proteica , Termodinámica , Simulación del Acoplamiento Molecular
3.
J Biomol Struct Dyn ; 41(7): 2630-2644, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35139760

RESUMEN

Esculin is structurally a hydroxycoumarin found in various medicinal plants. This study investigates the binding mode of esculin with bovine serum albumin by employing numerous spectroscopic studies and molecular docking approaches. Ultraviolet absorption spectroscopy revealed ground state complex formation between esculin and bovine serum albumin. At the same time, steady-state fluorescence studies showed quenching in the fluorescence emission spectra of BSA in the presence of esculin. To get insight into the location of the binding pocket of esculin on BSA, warfarin and ibuprofen site markers were used. Competitive site marker displacement assay revealed that esculin binds to Sudlow's site I (subdomain IIA) in bovine serum albumin. Thermodynamic parameters suggested that hydrogen bonding and van der Waals interaction stabilizes the esculin-BSA complex. Förster's non-radiation energy transfer analysis described the high propensity of energy transfer between bovine serum albumin and esculin. The molecular docking approach facilitated locating the binding pocket, amino acid residues involved, types of interacting forces, and binding energy (ΔG) between esculin and BSA. Circular dichroism revealed the effect of the binding of esculin on the secondary structure and helped understand the thermal unfolding profile of BSA in the presence of esculin.Communicated by Ramaswamy H. Sarm.


Asunto(s)
Esculina , Albúmina Sérica Bovina , Simulación del Acoplamiento Molecular , Albúmina Sérica Bovina/química , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Sitios de Unión
4.
Sci Rep ; 12(1): 2400, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35165338

RESUMEN

Resveratrol is a polyphenol belonging to the class stilbenes. The active and stable form of resveratrol is trans-resveratrol. This polyphenol is bestowed with numerous biological properties. Aflatoxin B1 is a hepato-carcinogen and mutagen that is produced by Aspergillus species. In this study, the interaction of trans-resveratrol with HSA followed by competitive dislodging of AFB1 from HSA by trans-resveratrol has been investigated using spectroscopic studies. The UV-absorption studies revealed ground state complex formation between HSA and trans-resveratrol. Trans-resveratrol binds strongly to HSA with the binding constant of ~ 107 M-1 to a single binding site (n = 1.58), at 298.15 K. The Stern-Volmer quenching constant was calculated as 7.83 × 104 M-1 at 298.15 K, suggesting strong fluorescence quenching ability of trans-resveratrol. Site markers displacement assay projected subdomain IIA as the binding site of trans-resveratrol to HSA. The molecular docking approach envisages the amino acid residues involved in the formation of the binding pocket. As confirmed from the site marker displacement assays, both trans-resveratrol and AFB1 binds to HSA in the same binding site, subdomain IIA. The study explores the ability of trans-resveratrol to displace AFB1 from the HSA-AFB1 complex, thereby affecting the toxicokinetic behavior of AFB1 associated with AFB1 exposure.


Asunto(s)
Aflatoxina B1/química , Resveratrol/química , Albúmina Sérica Humana/química , Sitios de Unión , Simulación por Computador , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , Análisis Espectral
5.
ACS Omega ; 6(28): 18054-18064, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34308039

RESUMEN

Aflatoxin B1 (AFB1) is a mutagen that has been categorized as a group 1 human carcinogen by the International Agency for Research on Cancer. It is produced as a secondary metabolite by soil fungi Aspergillus flavus and Aspergillus parasiticus . Here, in this study, the effect of AFB1 on the structure and conformation of bovine serum albumin (BSA) using multispectroscopic tools like fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy, and circular dichroism spectropolarimetry has been ascertained. Ultraviolet absorption spectroscopy revealed hyperchromicity in the absorption spectra of BSA in the presence of AFB1. The binding constant was calculated in the range of 104 M-1, by fluorescence spectroscopy suggesting moderate binding of the toxin to BSA. The study also confirms the static nature of fluorescence quenching. The stoichiometry of binding sites was found to be unity. The competing capability of warfarin for AFB1 was higher than ibuprofen as calculated from site marker displacement assay. Förster resonance energy transfer confirmed the high efficiency of energy transfer from BSA to AFB1. Circular dichroism spectropolarimetry showed a decrease in the α-helix in BSA in the presence of AFB1. The melting temperature of BSA underwent an increment in the presence of a mycotoxin from 62.5 to 70.3 °C. Molecular docking confirmed the binding of AFB1 to subdomain IIA in BSA.

6.
J Biomol Struct Dyn ; 39(11): 3934-3947, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32448054

RESUMEN

Erdafitinib is an approved tyrosine kinase inhibitor that inhibits fibroblast growth factor receptor. It has been described as one of the potent anti-tumor drugs especially for the treatment of urothelial carcinoma. In this study, we have investigated the binding dynamics of erdafitinib with human serum albumin (HSA) using multiple spectroscopic techniques. The outcome of the results suggests the occurrence of static quenching during the interaction of HSA with erdafitinib which leads to the formation of non-fluorescent HSA-erdafitinib ground state complex. Formation of HSA-erdafitinib complex was also confirmed from the findings of absorption spectral analysis. The changes in microenvironment around hydrophobic domains (especially tryptophan and tyrosine) were deciphered from fluorescence spectroscopy which was further confirmed by synchronous spectral analysis. In order to gain insight into the binding site of erdafitinib in HSA, molecular docking combined with competitive displacement assay was performed. The modified form of Stern Volmer equation was used to estimate various binding parameters including number of binding sites. The findings are indicative of a single binding site (n = 1) with binding constant in the order of 104. The negative values of thermodynamic parameters like ΔG, ΔH and ΔS were suggestive of the binding reaction being spontaneous and exothermic, while the hydrogen bonds and Van der Waals interactions being the major forces present between HSA and erdafitinib. Circular dichroism spectral analysis revealed the alterations in the conformation of HSA structure and reduction in its α-helical content.Communicated by Ramaswamy H. Sarma[Formula: see text].


Asunto(s)
Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Sitios de Unión , Dicroismo Circular , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , Inhibidores de Proteínas Quinasas , Pirazoles , Quinoxalinas , Albúmina Sérica Humana/metabolismo , Espectrometría de Fluorescencia , Termodinámica , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA