Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(32): 37161-37169, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35917495

RESUMEN

Polymer-surface interactions are crucial to many biological processes and industrial applications. Here we propose a machine learning method to connect a model polymer's sequence with its adhesion to decorated surfaces. We simulate the adhesive free energies of 20000 unique coarse-grained one-dimensional polymer sequences interacting with functionalized surfaces and build support vector regression models that demonstrate inexpensive and reliable prediction of the adhesive free energy as a function of sequence. Our work highlights the promising integration of coarse-grained simulation with data-driven machine learning methods for the design of functional polymers and represents an important step toward linking polymer compositions with polymer-surface interactions.

2.
J Chem Phys ; 152(13): 134901, 2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32268752

RESUMEN

Controlling the assembly of colloidal particles into specific structures has been a long-term goal of the soft materials community. Much can be learned about the process of self-assembly by examining the early stage assembly into clusters. For the simple case of hard spheres with short-range attractions, the rigid clusters of N particles (where N is small) have been enumerated theoretically and tested experimentally. Less is known, however, about how the free energy landscapes are altered when the inter-particle potential is long-ranged. In this work, we demonstrate how adaptive biasing in molecular simulations may be used to pinpoint shifts in the stability of colloidal clusters as the inter-particle potential is varied. We also discuss the generality of our techniques and strategies for application to related molecular systems.

4.
J Chem Phys ; 148(4): 044104, 2018 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-29390830

RESUMEN

Molecular simulation has emerged as an essential tool for modern-day research, but obtaining proper results and making reliable conclusions from simulations requires adequate sampling of the system under consideration. To this end, a variety of methods exist in the literature that can enhance sampling considerably, and increasingly sophisticated, effective algorithms continue to be developed at a rapid pace. Implementation of these techniques, however, can be challenging for experts and non-experts alike. There is a clear need for software that provides rapid, reliable, and easy access to a wide range of advanced sampling methods and that facilitates implementation of new techniques as they emerge. Here we present SSAGES, a publicly available Software Suite for Advanced General Ensemble Simulations designed to interface with multiple widely used molecular dynamics simulations packages. SSAGES allows facile application of a variety of enhanced sampling techniques-including adaptive biasing force, string methods, and forward flux sampling-that extract meaningful free energy and transition path data from all-atom and coarse-grained simulations. A noteworthy feature of SSAGES is a user-friendly framework that facilitates further development and implementation of new methods and collective variables. In this work, the use of SSAGES is illustrated in the context of simple representative applications involving distinct methods and different collective variables that are available in the current release of the suite. The code may be found at: https://github.com/MICCoM/SSAGES-public.

5.
Materials (Basel) ; 11(1)2018 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-29301305

RESUMEN

Ionic liquid crystals occupy an intriguing middle ground between room-temperature ionic liquids and mesostructured liquid crystals. Here, we examine a non-polarizable, fully atomistic model of the 1-alkyl-3-methylimidazolium nitrate family using molecular dynamics in the constant pressure-constant temperature ensemble. These materials exhibit a distinct "smectic" liquid phase, characterized by layers formed by the molecules, which separate the ionic and aliphatic moieties. In particular, we discuss the implications this layering may have for electrolyte applications.

6.
Polymers (Basel) ; 8(3)2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30979173

RESUMEN

We confirm Odijk's scaling laws for (i) the average chain extension; (ii) the variance about the average extension; and (iii) the confinement free energy of a wormlike chain confined in a rectangular nanochannel smaller than its chain persistence length through pruned-enriched Rosenbluth method (PERM) simulations of asymptotically long, discrete wormlike chains. In the course of this analysis, we also computed the global persistence length of ideal wormlike chains for the modestly rectangular channels that are used in many experimental systems. The results are relevant to genomic mapping systems that confine DNA in channel sizes around 50 nm, since fabrication constraints generally lead to rectangular cross-sections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA