RESUMEN
PURPOSE: To evaluate in situ the influence of sweat, oil, sunscreen, and disinfectant solution on the color stability, hardness, and roughness of elastomer for facial prostheses. MATERIALS AND METHODS: Standardized and intrinsically pigmented specimens remained in contact with human skin from the same person for 30 days, considering exposures (n = 36 per group), absent of exposition (Control, C); sweat and oiliness contact (SO); sweat and oiliness associated with sunscreen (SOS); 0.12% chlorhexidine digluconate immersion (CD0.12%); and all agents exposed (SOSCD). The main variables were color change (CIELab and National Standard Bureau system, NBS), Shore A hardness, and surface roughness, measured at baseline and 30 days. Qualitative analyses were performed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The data were analyzed by Kruskal-Wallis tests (color) and two-way ANOVA (hardness and roughness) with Sidak post-test (α = 0.05). RESULTS: CD0.12% (1.54 ± 0.49) and SOSCD (2.10 ± 1.03) had similar effects and caused the smallest color changes, considered mild and noticeable (NBS), respectively. SOS promoted the greatest color change (6.99 ± 1.43, NBS: large) and hardness (17.97 ± 0.56); SOS promoted intermediate roughness (3.48 ± 1.05) between SOSCD (2.25 ± 0.53), and two similar groups: C (4.46 ± 0.95), and CD0.12% (4.39 ± 1.26). The qualitative analysis showed an irregular, dense, dry, and whitish layer on the surface of the specimens exposed to sunscreen, which was reduced when in contact with 0.12% chlorhexidine digluconate. CONCLUSIONS: Endogenous and exogenous factors are capable of altering elastomer properties. The 0.12% chlorhexidine digluconate minimized the changes caused by sweat, oil, and sunscreen.