Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Br J Cancer ; 107(9): 1498-505, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-22955855

RESUMEN

BACKGROUND: Macrophage migration inhibitory factor (MIF) has been proposed as a link between inflammation and tumorigenesis. Despite its potentially broad influence in tumour biology and prevalent expression, the value of MIF as a therapeutic target in cancer remains unclear. We sought to validate MIF in tumour models by achieving a complete inhibition of its expression in tumour cells and in the tumour stroma. METHODS: We used MIF shRNA-transduced B16-F10 melanoma cells implanted in wild-type and MIF-/- C57Bl6 mice to investigate the effect of loss of MIF on tumour growth. Cytokine detection and immunohistochemistry (IHC) were used to evaluate tumours ex vivo. RESULTS: Macrophage migration inhibitory factor shRNA inhibited expression of MIF protein by B16-F10 melanoma cells in vitro and in vivo. In vitro, the loss of MIF in this cell line resulted in a decreased response to hypoxia as indicated by reduced expression of VEGF. In vivo the growth of B16-F10 tumours was inhibited by an average of 47% in the MIF-/- mice compared with wild-type but was unaffected by loss of MIF expression by the tumour cells. Immunohistochemistry analysis revealed that microvessel density was decreased in tumours implanted in the MIF-/- mice. Profiling of serum cytokines showed a decrease in pro-angiogenic cytokines in MIF-/- mice. CONCLUSION: We report that the absence of MIF in the host resulted in slower tumour growth, which was associated with reduced vascularity. While the major contribution of MIF appeared to be in the regulation of angiogenesis, tumour cell-derived MIF played a negligible role in this process.


Asunto(s)
Factores Inhibidores de la Migración de Macrófagos/biosíntesis , Melanoma Experimental/irrigación sanguínea , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Células HCT116 , Células HT29 , Humanos , Inmunohistoquímica , Factores Inhibidores de la Migración de Macrófagos/genética , Masculino , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Células del Estroma/metabolismo , Células del Estroma/patología , Transducción Genética
2.
Mol Cell Biol ; 21(3): 703-12, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11154258

RESUMEN

The Mad family comprises four basic-helix-loop-helix/leucine zipper proteins, Mad1, Mxi1, Mad3, and Mad4, which heterodimerize with Max and function as transcriptional repressors. The balance between Myc-Max and Mad-Max complexes has been postulated to influence cell proliferation and differentiation. The expression patterns of Mad family genes are complex, but in general, the induction of most family members is linked to cell cycle exit and differentiation. The expression pattern of mad3 is unusual in that mad3 mRNA and protein were found to be restricted to proliferating cells prior to differentiation. We show here that during murine development mad3 is specifically expressed in the S phase of the cell cycle in neuronal progenitor cells that are committed to differentiation. To investigate mad3 function, we disrupted the mad3 gene by homologous recombination in mice. No defect in cell cycle exit and differentiation could be detected in mad3 homozygous mutant mice. However, upon gamma irradiation, increased cell death of thymocytes and neural progenitor cells was observed, implicating mad3 in the regulation of the cellular response to DNA damage.


Asunto(s)
Apoptosis/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Proteínas Represoras , Fase S/genética , Fase S/fisiología , Animales , Apoptosis/fisiología , Apoptosis/efectos de la radiación , Secuencia de Bases , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Diferenciación Celular , División Celular , Cartilla de ADN/genética , Rayos gamma , Expresión Génica , Marcación de Gen , Linfocitos/citología , Linfocitos/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Neuronas/efectos de la radiación , Tolerancia a Radiación/efectos de los fármacos , Tolerancia a Radiación/fisiología
3.
Dev Genes Evol ; 210(10): 471-82, 2000 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11180796

RESUMEN

In vertebrates, the orphan nuclear receptors of the COUP-TF group function as negative transcriptional regulators that inhibit the hormonal induction of target genes mediated by classical members of the nuclear hormone superfamily, such as the retinoic acid receptors (RARs) or the thyroid hormone receptors (TRs). To investigate the evolutionary conservation of the roles of COUP-TF receptors as negative regulators in the retinoid and thyroid hormone pathways, we have characterized AmphiCOUP-TF, the homologue of COUP-TFI and COUP-TFII, in the chordate amphioxus (Branchiostoma floridae), the closest living invertebrate relative of the vertebrates. Electrophoretic mobility shift assays (EMSA) showed that AmphiCOUP-TF binds to a wide variety of response elements, as do its vertebrate homologues. Furthermore, AmphiCOUP-TF is a transcriptional repressor that strongly inhibits retinoic acid-mediated transactivation. In situ hybridizations revealed expression of AmphiCOUP-TF in the nerve cord of late larvae, in a region corresponding to hindbrain and probably anterior spinal cord. Although the amphioxus nerve cord appears unsegmented at the gross anatomical level, this pattern reflects segmentation at the cellular level with stripes of expressing cells occurring adjacent to the ends and the centers of each myotomal segment, which may include visceral motor neurons and somatic motor neurons respectively, among other cells. A comparison of the expression pattern of AmphiCOUP-TF with those of its vertebrate homologues, suggests that the roles of COUP-TF in patterning of the nerve cord evolved prior to the split between the amphioxus and vertebrate lineages. Furthermore, in vitro data also suggest that Amphi-COUP-TF acts as a negative regulator of signalling by other nuclear receptors such as RAR, TR or ER.


Asunto(s)
Cordados no Vertebrados/metabolismo , Proteínas de Unión al ADN/fisiología , Receptores de Esteroides , Transducción de Señal , Factores de Transcripción/fisiología , Tretinoina/metabolismo , Animales , Secuencia de Bases , Factor de Transcripción COUP II , Factores de Transcripción COUP , Cartilla de ADN , Proteínas de Unión al ADN/genética , Filogenia , Factores de Transcripción/genética
4.
J Biol Chem ; 274(51): 36344-50, 1999 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-10593926

RESUMEN

Mad:Max heterodimers oppose the growth-promoting action of Myc:Max heterodimers by recruiting the mSin3-histone deacetylase (mSin3. HDAC) complex to DNA and functioning as potent transcriptional repressors. There are four known members of the Mad family that are indistinguishable in their abilities to interact with Max, bind DNA, repress transcription, and block Myc + Ras co-transformation. To investigate functional differences between Mad family proteins, we have identified additional proteins that interact with this family. Here we present the identification and characterization of the novel basic-helix-loop-helix zipper protein Mlx (Max-like protein x), which is structurally and functionally related to Max. The similarities between Mlx and Max include 1) broad expression in many tissues, 2) long protein half-life, and 3) formation of heterodimers with Mad family proteins that are capable of specific CACGTG binding. We show that transcriptional repression by Mad1:Mlx heterodimers is dependent on dimerization, DNA binding, and recruitment of the mSin3A.HDAC corepressor complex. In contrast with Max, Mlx interacts only with Mad1 and Mad4. Together, these findings suggest that Mlx may act to diversify Mad family function by its restricted association with a subset of the Mad family of transcriptional repressors.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Células 3T3 , Secuencia de Aminoácidos , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Clonación Molecular , Células HeLa , Secuencias Hélice-Asa-Hélice , Humanos , Ratones , Datos de Secuencia Molecular , Alineación de Secuencia , Activación Transcripcional
5.
Cell Growth Differ ; 10(12): 785-96, 1999 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-10616903

RESUMEN

The four members of the MAD family are bHLHZip proteins that heterodimerize with MAX and act as transcriptional repressors. The switch from MYC-MAX complexes to MAD-MAX complexes has been postulated to couple cell-cycle arrest with differentiation. The ectopic expression of Mad1 in transgenic mice led to early postnatal lethality and dwarfism and had a profound inhibitory effect on the proliferation of the hematopoietic cells and embryonic fibroblasts derived from these animals. Compared to wild-type cells, Mad1 transgenic fibroblasts arrested with altered morphology and reduced density at confluence, cycled more slowly, and were delayed in their progression from G0 to the S phase. These changes were accompanied by accumulation of hypophosphorylated retinoblastoma protein and p130. Cyclin D1-associated kinase activity was dramatically reduced in MAD1-overexpressing fibroblasts. However, wild-type cell-cycle distribution and morphology could be rescued in the Mad1 transgenic cells by the introduction of HPV-E7, but not an E7 mutant incapable of binding to pocket proteins. This indicates that the activities of the retinoblastoma family members, via the cyclin D pathway, are likely to be the major targets for MAD1-mediated inhibition of proliferation in primary mouse fibroblasts.


Asunto(s)
Proteínas de Unión al ADN/biosíntesis , Secuencias Hélice-Asa-Hélice , Proteínas Represoras , Transactivadores/biosíntesis , Animales , Animales Recién Nacidos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , División Celular , Células Cultivadas , Quinasas Ciclina-Dependientes/metabolismo , Proteínas de Unión al ADN/genética , Enanismo , Pérdida del Embrión/genética , Fibroblastos/citología , Expresión Génica , Células Madre Hematopoyéticas/citología , Ratones , Ratones Transgénicos , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Proteínas E7 de Papillomavirus , Fenotipo , Proteínas Smad , Transactivadores/genética
6.
Oncogene ; 16(8): 967-77, 1998 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-9519870

RESUMEN

Members of the Myc proto-oncogene family encode transcription factors that function in multiple aspects of cell behavior, including proliferation, differentiation, transformation and apoptosis. Recent studies have shown that MYC activities are modulated by a network of nuclear bHLH-Zip proteins. The MAX protein is at the center of this network in that it associates with MYC as well as with the family of MAD proteins: MAD1, MXI1, MAD3 and MAD4. Whereas MYC-MAX complexes activate transcription, MAD-MAX complexes repress transcription through identical E-box binding sites. MAD proteins therefore act as antagonists of MYC. Here we report the expression patterns of the Mad gene family in the adult and developing mouse. High level of Mad gene expression in the adult is limited to tissues that display constant renewal of differentiated cell populations. In embryos, Mad transcripts are widely distributed with expression peaking during organogenesis at the onset of differentiation. A detailed analysis of their pattern of expression during chrondrocyte and neuronal differentiation in vivo, and during neuronal differentiation of P19 cells in vitro, shows that Mad family genes are sequentially induced. Mad3 transcripts and proteins are detected in proliferating cells prior to differentiation. Mxi1 and Mad4 transcripts are most abundant in cells that have further advanced along the differentiation pathway, whereas Mad1 is primarily expressed late in differentiation. Taken together, our data suggest that the different members of the MAD protein family exert their functions at distinct steps during the transition between proliferation and differentiation.


Asunto(s)
Proteínas de Unión al ADN/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Proteínas Represoras , Factores de Transcripción , Adulto , Secuencia de Aminoácidos , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Cartílago/embriología , Cartílago/crecimiento & desarrollo , Cartílago/metabolismo , Diferenciación Celular/fisiología , División Celular/fisiología , Condrocitos/citología , Condrocitos/fisiología , Proteínas de Unión al ADN/genética , Genes myc , Humanos , Ratones , Datos de Secuencia Molecular , Neuronas/citología , Neuronas/fisiología , Proto-Oncogenes Mas
7.
EMBO J ; 17(3): 774-85, 1998 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-9451002

RESUMEN

The switch from transcriptionally activating MYC-MAX to transcriptionally repressing MAD1-MAX protein heterodimers has been correlated with the initiation of terminal differentiation in many cell types. To investigate the function of MAD1-MAX dimers during differentiation, we disrupted the Mad1 gene by homologous recombination in mice. Analysis of hematopoietic differentiation in homozygous mutant animals revealed that cell cycle exit of granulocytic precursors was inhibited following the colony-forming cell stage, resulting in increased proliferation and delayed terminal differentiation of low proliferative potential cluster-forming cells. Surprisingly, the numbers of terminally differentiated bone marrow and peripheral blood granulocytes were essentially unchanged in Mad1 null mice. This imbalance between the frequencies of precursor and mature granulocytes was correlated with a compensatory decrease in granulocytic cluster-forming cell survival under apoptosis-inducing conditions. In addition, recovery of the peripheral granulocyte compartment following bone marrow ablation was significantly enhanced in Mad1 knockout mice. Two Mad1-related genes, Mxi1 and Mad3, were found to be expressed ectopically in adult spleen, indicating that functional redundancy and cross-regulation between MAD family members may allow for apparently normal differentiation in the absence of MAD1. These findings demonstrate that MAD1 regulates cell cycle withdrawal during a late stage of granulocyte differentiation, and suggest that the relative levels of MYC versus MAD1 mediate a balance between cell proliferation and terminal differentiation.


Asunto(s)
Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/farmacología , Granulocitos/citología , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Proteínas Represoras , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Médula Ósea/cirugía , Células de la Médula Ósea/efectos de los fármacos , Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Células Cultivadas , Citocinas/farmacología , Fluorouracilo/farmacología , Genes/genética , Granulocitos/fisiología , Humanos , Macrófagos/citología , Macrófagos/fisiología , Ratones , Ratones Endogámicos , Ratones Noqueados , Monocitos/citología , Monocitos/fisiología , Familia de Multigenes/genética , Mutagénesis Sitio-Dirigida/genética , Mutagénesis Sitio-Dirigida/fisiología , Sensibilidad y Especificidad
9.
Cell Growth Differ ; 8(6): 655-65, 1997 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-9185999

RESUMEN

In embryos and in human tumors, the expression of the ETS1 transcription factor correlates with the occurrence of invasive processes. Although this was demonstrated in cells of mesodermal origin, the expression of ETS1 was not detected in epithelial cells. In the present study, we show that during early organogenesis in the chick embryo, ETS1 mRNA expression was transiently induced in epithelial structures, during emigration of neural crest cells and dispersion of somites into the mesenchymal sclerotome. In contrast, the expression of ETS1 was not detected in situations where epithelial layers stayed cohesive while forming a new structure, such as the dermomyotome forming the myotome. The involvement of ETS1 in epithelial cell dissociation was examined in MDCK epithelial cells stimulated by scatter factor/hepatocyte growth factor (SF/HGF), a potent inducer of cell dissociation and motility. SF/HGF was found to stimulate ETS1 mRNA and protein expressions, and these increases coincided with the dispersion of cells and the expression of protease mRNAs, such as urokinase-type plasminogen activator and collagenase, but not with the protease inhibitor, plasminogen activator inhibitor type 1. Furthermore, we showed that SF/HGF was able to induce a transcriptional response involving ETS1 by using artificial as well as cellular promoters, such as the urokinase-type plasminogen activator and collagenase 1 promoters, containing RAS-responsive elements with essential ETS-binding sites. These data demonstrate expression of ETS1 during epithelial-mesenchymal transitions in the developing embryo and show that ETS1 can act as a downstream effector of SF/HGF in MDCK epithelial cells. Taken together, these data identify ETS1 as a molecular actor of epithelia cell dissociation.


Asunto(s)
Diferenciación Celular/genética , Epitelio/embriología , Morfogénesis/fisiología , Proteínas Proto-Oncogénicas/genética , Factores de Transcripción/genética , Animales , Northern Blotting , Línea Celular , Embrión de Pollo , Colagenasas/genética , Cisteína/metabolismo , Perros , Desarrollo Embrionario y Fetal/genética , Desarrollo Embrionario y Fetal/fisiología , Epitelio/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Expresión Génica/genética , Factor de Crecimiento de Hepatocito/fisiología , Hibridación in Situ , Microscopía Fluorescente , Morfogénesis/genética , Cresta Neural/embriología , Proteína Proto-Oncogénica c-ets-1 , Proteínas Proto-Oncogénicas c-ets , ARN Mensajero , Transducción de Señal , Somitos/citología , Somitos/metabolismo , Activación Transcripcional , Activador de Plasminógeno de Tipo Uroquinasa/genética
10.
Genes Dev ; 11(1): 44-58, 1997 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-9000049

RESUMEN

The small constitutively expressed bHLHZip protein Max is known to form sequence-specific DNA binding heterodimers with members of both the Myc and Mad families of bHLHZip proteins. Myc:Max complexes activate transcription, promote proliferation, and block terminal differentiation. In contrast, Mad:Max heterodimers act as transcriptional repressors, have an antiproliferative effect, and are induced upon differentiation in a wide variety of cell types. We have identified a novel bHLHZip Max-binding protein, Mnt, which belongs to neither the Myc nor the Mad families and which is coexpressed with Myc in a number of proliferating cell types. Mnt:Max heterodimers act as transcriptional repressors and efficiently suppress Myc-dependent activation from a promoter containing proximal CACGTG sites. Transcription repression by Mnt maps to a 13-amino-acid amino-terminal region related to the Sin3 interaction domain (SID) of Mad proteins. We show that this region of Mnt mediates interaction with mSin3 corepressor proteins and that its deletion converts Mnt from a repressor to an activator. Furthermore, wild-type Mnt suppresses Myc+Ras cotransformation of primary cells, whereas Mnt containing a SID deletion cooperates with Ras in the absence of Myc to transform cells. This suggests that Mnt and Myc regulate an overlapping set of target genes in vivo. When mnt is expressed as a transgene under control of the beta-actin promoter in mice the transgenic embryos exhibit a delay in development and die during mid-gestation, when c- and N-Myc functions are critical. We propose that Mnt:Max:Sin3 complexes normally function to restrict Myc:Max activities associated with cell proliferation.


Asunto(s)
Proteínas de Unión al ADN/química , Factores de Transcripción/química , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , División Celular/genética , Clonación Molecular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fibroblastos , Hibridación in Situ , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ratas , Proteínas Recombinantes/genética , Proteínas Represoras/genética , Alineación de Secuencia , Factores de Transcripción/genética , Transcripción Genética/genética , Transformación Genética/genética
11.
Curr Top Microbiol Immunol ; 224: 115-21, 1997.
Artículo en Inglés | MEDLINE | ID: mdl-9308234

RESUMEN

We have identified a novel Max-binding protein, Mnt, which belongs to neither the Myc nor the Mad families (Hurlin et al. 1997). Mnt interacts with Max in vivo and functions as a transcriptional repressor of reporter genes containing promoter-proximal CACGTG sites. Mnt:Max complexes also efficiently suppress Myc-dependent activation from the same promoter. Transcription repression by Mnt maps to a 13 amino acid N-terminal region related to the Sin3 interaction domain (SID) of Mad proteins. This region of Mnt mediates interaction with mSin3 corepressor proteins and its deletion converts Mnt from a repressor to an activator and from a suppressor of Myc-dependent transformation to a cooperating oncogene. This latter result suggests that Mnt and Myc regulate an overlapping set of target genes in vivo. Expression of mnt RNA is observed in many tissues and in both proliferating and differentiating cells. Likewise, Mnt protein is expressed in many proliferating cell types in culture where both Myc:Max and Mnt:Max complexes are detected. An exception is P19 embryonal carcinoma cells, where Mnt is expressed and in a complex with Max, but Myc proteins are not detected. Mnt is likely to be a key regulator of Myc activities in vivo and, in addition, may possess Myc-independent functions.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Factores de Transcripción , Animales , Secuencia de Bases , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Sitios de Unión/genética , División Celular , ADN/genética , ADN/metabolismo , Ratones , Proteínas Represoras/metabolismo
13.
EMBO J ; 14(22): 5646-59, 1995 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-8521822

RESUMEN

The basic helix-loop-helix-leucine zipper (bHLHZip) protein Max associates with members of the Myc family, as well as with the related proteins Mad (Mad1) and Mxi1. Whereas both Myc:Max and Mad:Max heterodimers bind related E-box sequences, Myc:Max activates transcription and promotes proliferation while Mad:Max represses transcription and suppresses Myc dependent transformation. Here we report the identification and characterization of two novel Mad1- and Mxi1-related proteins, Mad3 and Mad4. Mad3 and Mad4 interact with both Max and mSin3 and repress transcription from a promoter containing CACGTG binding sites. Using a rat embryo fibroblast transformation assay, we show that both Mad3 and Mad4 inhibit c-Myc dependent cell transformation. An examination of the expression patterns of all mad genes during murine embryogenesis reveals that mad1, mad3 and mad4 are expressed primarily in growth-arrested differentiating cells. mxi1 is also expressed in differentiating cells, but is co-expressed with either c-myc, N-myc, or both in proliferating cells of the developing central nervous system and the epidermis. In the developing central nervous system and epidermis, downregulation of myc genes occurs concomitant with upregulation of mad family genes. These expression patterns, together with the demonstrated ability of Mad family proteins to interfere with the proliferation promoting activities of Myc, suggest that the regulated expression of Myc and Mad family proteins function in a concerted fashion to regulate cell growth in differentiating tissues.


Asunto(s)
Transformación Celular Neoplásica , Proteínas de Unión al ADN/metabolismo , Proteínas I-kappa B , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Represoras/metabolismo , Factores de Transcripción , Células 3T3 , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Diferenciación Celular , Transformación Celular Neoplásica/genética , Células Cultivadas , Mapeo Cromosómico , Proteínas de Unión al ADN/genética , Células Epidérmicas , Epidermis/embriología , Epidermis/metabolismo , Genes myc , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Inhibidor NF-kappaB alfa , Unión Proteica , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ratas , Proteínas Represoras/genética , Médula Espinal/citología , Médula Espinal/embriología , Médula Espinal/metabolismo , Transcripción Genética , Proteínas Supresoras de Tumor
14.
Invasion Metastasis ; 14(1-6): 198-209, 1994.
Artículo en Inglés | MEDLINE | ID: mdl-7657513

RESUMEN

The protein encoded by the c-ets1 proto-oncogene is a member of a new family of transcription factors. Cellular regulatory sequences responsive to the c-Ets1 proteins include a urokinase-type plasminogen activator (uPA) gene enhancer, the stromelysin 1 and the collagenase 1 gene promoters. During normal as well as pathological development, the expression of c-ets1 is associated with the occurrence of invasive processes, either in invading cells or in the invaded tissue. Since these invasive processes are thought to require the remodeling of the extracellular matrix, we investigate the relationships between c-Ets1 and the expression patterns of transcripts encoding the matrix-degrading proteases uPA, stromelysin 1 and collagenase 1, in embryos and in solid tumors.


Asunto(s)
Neoplasias/genética , Neoplasias/patología , Proteínas Proto-Oncogénicas/genética , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Animales , Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Invasividad Neoplásica , Neoplasias/enzimología , Proto-Oncogenes Mas , Proteína Proto-Oncogénica c-ets-1 , Proteínas Proto-Oncogénicas c-ets
15.
Folia Biol (Praha) ; 40(5): 301-13, 1994.
Artículo en Inglés | MEDLINE | ID: mdl-7534726

RESUMEN

The c-ets1 proto-oncogene encodes a transcription factor that binds a GGAA/T purine rich core DNA sequence. During normal as well as pathological development, the expression of c-ets1 is associated with the occurrence of invasive processes, either in invading cells or in the invaded tissue. Cellular regulatory sequences responsive to the c-Ets1 proteins include a urokinase-type plasminogen activator (u-PA) gene enhancer, the stromelysin-1 and the collagenase-1 gene promoters. Since invasive processes are thought to require the remodeling of the extra-cellular matrix, we investigate the relationships between c-Ets1 and the expression pattern of transcripts encoding these matrix degrading proteases, in embryos and in solid tumors.


Asunto(s)
Neovascularización Patológica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proto-Oncogenes/fisiología , Factores de Transcripción/genética , Neovascularización Patológica/fisiopatología , Proteína Proto-Oncogénica c-ets-1 , Proteínas Proto-Oncogénicas c-ets , Factores de Transcripción/metabolismo
16.
Oncogene ; 8(9): 2511-20, 1993 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-8361762

RESUMEN

The chicken c-ets-1 proto-oncogene encodes two transcription factors, p54c-ets-1 and p68c-ets-1, which contain the same DNA-binding domain but differ in their transactivating activities. We have investigated the spatial and temporal distribution of the transcripts encoding p54c-ets-1 and p68c-ets-1 throughout the development of the chick embryo. We report that p68c-ets-1 as well as p54c-ets-1 is expressed in a wide variety of cells of mesodermal origin, including endothelial cells and mesenchymal cells interacting with epithelium. However, whereas p54c-ets-1 transcripts are detected in most cells, p68c-ets-1 transcripts are restricted to a subset of these cells, randomly distributed. In contrast, p54c-ets-1 is expressed in the absence of p68c-ets-1 in T and B lymphocytes. We show that, during erythropoiesis, both p68c-ets-1 and p54c-ets-1 are expressed in immature erythroid cells in extraembryonic blood islands. The pattern of expression of p54c-ets-1 and p68c-ets-1 during embryonic development suggests the involvement of these transcription factors in the regulation of morphogenetic processes. In addition, we provide the first clue that p68c-ets-1, the cellular progenitor of the v-ets oncogene, is expressed in erythroid cells. This result is very important with respect to the properties of the v-ets oncogene, which confers on the retrovirus E26 the ability to transform erythroid cells.


Asunto(s)
Proteínas Proto-Oncogénicas/genética , Proto-Oncogenes , Factores de Transcripción , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Embrión de Pollo , Endotelio/metabolismo , Plumas/citología , Expresión Génica , Hematopoyesis , Hibridación in Situ , Datos de Secuencia Molecular , Morfogénesis , Oligodesoxirribonucleótidos/química , Proteínas Proto-Oncogénicas/inmunología , Proteínas Proto-Oncogénicas c-ets , ARN Mensajero/genética
17.
Development ; 114(1): 125-33, 1992 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-1576954

RESUMEN

The v-myb oncogene of the acute avian leukemia virus E26 encodes a transcription factor that directly regulates the promyelocyte-specific mim-1 gene (Ness, S.A., Marknell, A. and Graf, T. Cell, 59, 1115-1125). We have investigated the relationship between the c-myb proto-oncogene and the transcription of the mim-1 gene both in vitro and in vivo. We demonstrate that the c-myb protein can transactivate the transcription of mim-1 in a transient transfection assay. In the chick embryo, we confirm that mim-1 is specifically expressed during granulopoiesis and we show that the expression of c-myb and mim-1 are perfectly correlated in the granulocytic spleen and pancreas. However we suggest that mim-1 is efficiently transcribed in the absence of c-myb in the yolk sac and in the promyelocytes at the onset of the colonization of the bursa of Fabricius. On the other hand c-myb transcripts detected in the early hemopoietic progenitor cells, in lymphoid cells and in proliferative epithelia are never associated with mim-1 transcription. We conclude that the granulocyte-specific mim-1 gene is regulated by c-myb-dependent and c-myb-independent mechanisms depending upon the environment in which granulocytic precursor cells differentiate.


Asunto(s)
Genes/genética , Sustancias de Crecimiento/genética , Hematopoyesis/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Oncogénicas de Retroviridae/genética , Transcripción Genética/genética , Activación Transcripcional/genética , Animales , Diferenciación Celular/genética , Embrión de Pollo , Granulocitos/fisiología , Músculos/embriología , Proteínas Oncogénicas v-myb , Páncreas/embriología , Páncreas/fisiología , Proteínas Proto-Oncogénicas c-myb , Bazo/embriología , Bazo/fisiología , Timo/embriología , Timo/fisiología , Saco Vitelino/fisiología
18.
Development ; 111(3): 699-713, 1991 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-1879337

RESUMEN

We have described the expression of three nuclear protooncogenes, c-myc, c-myb and c-ets-1 during feather morphogenesis in the chick embryo. In parallel with the expression patterns obtained by in situ hybridization, we have mapped the spatial distribution of S-phase cells by monitoring the incorporation of 5-bromodeoxyuridine. We do not detect c-myc or c-myb transcripts during the early stages when S-phase cells are scattered in the dermis and in the epidermis. Rather c-ets-1 transcripts are abundant in the dermal cells which divide and accumulate under the uniform epidermis. At the onset of the formation of the feather bud, cells within each rudiment cease DNA replicative activities and c-myc transcripts are detected both in the epidermis and in the underlying dermis. This expression precedes the reentry into the S phase. The transcription of c-myb, which has been previously tightly linked to hemopoietic cells is also detected in the developing skin. This expression is essentially located in proliferating epidermal cells on and after the beginning of feather outgrowth. As feather outgrowth proceeds, the distribution of c-myc and c-myb transcripts is restricted to the highly proliferating epidermis. In contrast c-ets-1 transcripts are never detected in the epidermis. During the later stages of skin morphogenesis, the transcription of c-ets-1 is restricted to the endothelial cells of blood vessels, as previously described. We suggest that the differential expression of these nuclear oncogenes reflects the activation of different mitotic controlling pathways during the development of the skin.


Asunto(s)
Plumas/embriología , Expresión Génica/fisiología , Proteínas Proto-Oncogénicas/genética , Factores de Transcripción , Transcripción Genética/fisiología , Animales , División Celular/fisiología , Embrión de Pollo , Plumas/fisiología , Microscopía Electrónica , Microscopía Fluorescente , Técnicas de Sonda Molecular , Morfogénesis , Proteínas Proto-Oncogénicas c-ets , Proteínas Proto-Oncogénicas c-myb , Proteínas Proto-Oncogénicas c-myc/genética , Fase S/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA