Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1236891, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711687

RESUMEN

The interaction between poisonous weeds and neighboring plants is complex. Poisonous weeds frequently have a competitive advantage in the interaction between poisonous weeds and neighboring plants. Arbuscular mycorrhizal fungi (AMF) and plant pathogenic fungi (PPF) are closely related to the interspecific relationships of plants. However, the role of AMF and PPF between poisonous weeds and neighboring grasses remains unclear. Here, we designed a pot experiment to determine the interspecific relationship between Leymus chinensis and Stellera chamaejasme and the regulation of AMF and PPF. The results showed that interactive effects between L. chinensis and S. chamaejasme significantly inhibited the aboveground growth of both but promoted the underground growth of L. chinensis. As the proportions of S. chamaejasme increased, the total nitrogen content and pH in the rhizosphere soil of L. chinensis were reduced, the soil pH of S. chamaejasme was reduced, and the relative abundance of AMF in the rhizosphere soil of L. chinensis significantly increased and that of S. chamaejasme decreased considerably. The relative abundances of PPF in the rhizosphere soil of both in the mono-cultures were significantly higher than those in the mixed cultures. Structural equation modeling indicated that soil abiotic (pH and N availability) and biotic (AMF and PPF) factors are major drivers explaining the interactive effects between L. chinensis and S. chamaejasme. We provided new evidence for the interspecific interactions between poisonous weeds and neighboring grasses and revealed the regulatory role of AMF and PPF in the interactive effects of both plants. This study will provide a scientific basis for the prevention and control of poisonous weeds and the vegetation restoration of degraded grasslands in the future.

2.
Front Plant Sci ; 14: 1110685, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37229114

RESUMEN

Introduction: Saline-alkali degradation in grassland significantly affects plant community composition and soil physical and chemical properties. However, it remains unclear whether different degradation gradients affect soil microbial community and the main soil driving factors. Therefore, it is important to elucidate the effects of saline-alkali degradation on soil microbial community and the soil factors affecting soil microbial community in order to develop effective solutions to restore the degraded grassland ecosystem. Methods: In this study, Illumina high-throughput sequencing technology was used to study the effects of different saline-alkali degradation gradients on soil microbial diversity and composition. Three different gradients were qualitatively selected, which were the light degradation gradient (LD), the moderate degradation gradient (MD) and the severe degradation gradient (SD). Results: The results showed that salt and alkali degradation decreased the diversity of soil bacterial and fungal communities, and changed the composition of bacterial and fungal communities. Different degradation gradients had different adaptability and tolerance species. With the deterioration of salinity in grassland, the relative abundance of Actinobacteriota and Chytridiomycota showed a decreasing trend. EC, pH and AP were the main drivers of soil bacterial community composition, while EC, pH and SOC were the main drivers of soil fungal community composition. Different microorganisms are affected by different soil properties. The changes of plant community and soil environment are the main factors limiting the diversity and composition of soil microbial community. Discussion: The results show that saline-alkali degradation of grassland has a negative effect on microbial biodiversity, so it is important to develop effective solutions to restore degraded grassland to maintain biodiversity and ecosystem function.

3.
Front Microbiol ; 13: 1065899, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36590393

RESUMEN

Introduction: Human concerns about fossil fuel depletion, energy security and environmental degradation have driven the rapid development of solar photovoltaic (PV) power generation. Most of the photovoltaic power generation plants are concentrated in desert, grassland and arable land, which means the change of land use type. However, there is still a gap in the research of the PV panel layout on grassland plant species diversity and ecological function. Methods: In this study, Illumina high-throughput sequencing technology was used to investigate the effects of PV panel arrangement on grassland plant species diversity and soil microbial diversity. In view of the differences in the microclimate at different sites of the PV panels, quadrates were arranged in front edge (FE), beneath the center of each panel (BP), back edge (BE), the uncovered interspace adjacent to each panel (IS) and the undisturbed grassland around the PV panels (Control), respectively. Results: PV panels (especially FE) significantly increased the total aboveground productivity (total AGB) and plant species diversity in grasslands. FE increased precipitation accumulation and plant species diversity directly and indirectly changed the diversity of soil bacterial and fungal communities. PV panels decreased the relative abundance of Actinobacteriota, while increased the relative abundance of Proteobacteria, Acidobacteriota, and Methylomirabilota. EC, Margalef' s richness and total AGB were the main factors affecting the composition of bacterial communities, while alkaline hydrolysis nitrogen (AN) and available phosphorus (AP) were the main factors affecting the composition of fungal communities. Discussion: In conclusion, the arrangement of PV panels increased the plant species diversity and soil microorganisms in grassland. This study provides important information for further understanding the impact of PV panels on grassland ecosystem function and is of great significance for maintaining grassland ecosystem function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA