Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37571173

RESUMEN

Styrene, a chemical widely used in various industries, undergoes metabolic breakdown in the human body, resulting in the production of phenylglyoxylic acid (PGA). A novel molecularly imprinted polymer (MIP) was synthesised for selective extraction and enrichment of PGA in urine samples prior to high-performance liquid chromatography. The MIP employed in this research was a 4-vinylpyridine molecularly imprinted polymer (4-VPMIP) prepared via mass polymerisation using a noncovalent method. The structural and morphological characteristics of the molecularly imprinted polymers (MIPs) and non-imprinted polymers (NIPs) were evaluated using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The efficiency of the molecularly imprinted solid-phase extraction (MISPE) process was optimised by investigating critical variables such as sample pH, sorbent mass, sample flow rate, and volume of the elution solvent. A central composite design (CCD) within the response surface methodology was utilised to develop separate models for the adsorption and desorption steps. Analysis of variance (ANOVA) confirmed the excellent fit of the experimental data to the proposed response models. Under the optimised conditions, the molecularly imprinted polymers exhibited a higher degree of selectivity and affinity for PGA, with a relative selectivity coefficient (α) of 2.79 against hippuric acid. The limits of detection (LOD) and quantification (LOQ) for PGA were determined to be 0.5 mg/L and 1.6 mg/L, respectively. The recoveries of PGA ranged from 97.32% to 99.06%, with a relative standard deviation (RSD) lower than 4.6%. Furthermore, MIP(4VP)SPE demonstrated the potential for recycling up to three times without significant loss in analyte recovery.

2.
Polymers (Basel) ; 15(10)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37242973

RESUMEN

4-Vinylpyridine molecularly imprinted polymer (4-VPMIP) microparticles for mandelic acid (MA) metabolite as a major biomarker of exposure to styrene (S) were synthesized by bulk polymerization with a noncovalent approach. A common mole ratio of 1:4:20 (i.e., metabolite template: functional monomer: cross-linking agent, respectively) was applied to allow the selective solid-phase extraction of MA in a urine sample followed by high-performance liquid chromatography-diode array detection (HPLC-DAD). In this research, the 4-VPMIP components were carefully selected: MA was used as a template (T), 4-Vinylpyridine (4-VP) as a functional monomer (FM), ethylene glycol dimethacrylate (EGDMA) as a cross-linker (XL), and azobisisobutyronitrile (AIBN) as an initiator (I) and acetonitrile (ACN) as a porogenic solvent. Non-imprinted polymer (NIP) which serves as a "control" was also synthesized simultaneously under the same condition without the addition of MA molecules. Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM) were used to characterize the imprinted and nonimprinted polymer to explain the structural and morphological characteristics of the 4-VPMIP and surface NIP. The results obtained from SEM depicted that the polymers were irregularly shaped microparticles. Moreover, MIPs surfaces had cavities and were rougher than NIP. In addition, all particle sizes were less than 40 µm in diameter. The IR spectra of 4-VPMIPs before washing MA were a little different from NIP, while 4-VPMIP after elution had a spectrum that was almost identical to the NIP spectrum. The adsorption kinetics, isotherms, competitive adsorption, and reusability of 4-VPMIP were investigated. 4-VPMIP showed good recognition selectivity as well as enrichment and separation abilities for MA in the extract of human urine with satisfactory recoveries. The results obtained in this research imply that 4-VPMIP might be used as a sorbent for MA solid-phase extraction (MISPE), for the exclusive extraction of MA in human urine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA