Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Transgenic Res ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39249190

RESUMEN

Dehydroascorbate reductase (DHAR), an indispensable enzyme in the production of ascorbic acid (AsA) in plants, is vital for plant tolerance to various stresses. However, there is limited research on the stress tolerance functions of DHAR genes in sweet potato (Ipomoea batatas [L.] Lam). In this study, the full-length IbDHAR1 gene was cloned from the leaves of sweet potato cultivar Xu 18. The IbDHAR1 protein is speculated to be located in both the cytoplasm and the nucleus. As revealed by qRT-PCR, the relative expression level of IbDHAR1 in the proximal storage roots was much greater than in the other tissues, and could be upregulated by high-temperature, salinity, drought, and abscisic acid (ABA) stress. The results of pot experiments indicated that under high salinity and drought stress conditions, transgenic Arabidopsis and sweet potato plants exhibited decreases in H2O2 and MDA levels. Conversely, the levels of antioxidant enzymes APX, SOD, POD, and ACT, and the content of DHAR increased. Additionally, the ratio of AsA/DHA was greater in transgenic lines than in the wild type. The results showed that overexpression of IbDHAR1 intensified the ascorbic acid-glutathione cycle (AsA-GSH) and promoted the activity of the related antioxidant enzyme systems to improve plant stress tolerance and productivity.

2.
Front Plant Sci ; 10: 630, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31156685

RESUMEN

The abscisic acid (ABA)-responsive element binding factors (ABFs) play important regulatory roles in multiple abiotic stresses responses. However, information on the stress tolerance functions of ABF genes in sweetpotato (Ipomoea batatas [L.] Lam) remains limited. In the present study, we isolated and functionally characterized the sweetpotato IbABF4 gene, which encodes an abiotic stress-inducible basic leucine zipper (bZIP) transcription factor. Sequence analysis showed that the IbABF4 protein contains a typical bZIP domain and five conserved Ser/Thr kinase phosphorylation sites (RXXS/T). The IbABF4 gene was constitutively expressed in leaf, petiole, stem, and root, with the highest expression in storage root body. Expression of IbABF4 was induced by ABA and several environmental stresses including drought, salt, and heat shock. The IbABF4 protein localized to the nucleus, exhibited transcriptional activation activity, and showed binding to the cis-acting ABA-responsive element (ABRE) in vitro. Overexpression of IbABF4 in Arabidopsis thaliana not only increased ABA sensitivity but also enhanced drought and salt stress tolerance. Furthermore, transgenic sweetpotato plants (hereafter referred to as SA plants) overexpressing IbABF4, generated in this study, exhibited increased tolerance to drought, salt, and oxidative stresses on the whole plant level. This phenotype was associated with higher photosynthetic efficiency and lower malondialdehyde and hydrogen peroxide content. Levels of endogenous ABA content and ABA/stress-responsive gene expression were significantly upregulated in transgenic Arabidopsis and sweetpotato plants compared with wild-type plants under drought stress. Our results suggest that the expression of IbABF4 in Arabidopsis and sweetpotato enhances tolerance to multiple abiotic stresses through the ABA signaling pathway.

3.
Int J Mol Sci ; 18(11)2017 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-29088105

RESUMEN

Forsythia suspensa is an important medicinal plant and traditionally applied for the treatment of inflammation, pyrexia, gonorrhea, diabetes, and so on. However, there is limited sequence and genomic information available for F. suspensa. Here, we produced the complete chloroplast genomes of F. suspensa using Illumina sequencing technology. F. suspensa is the first sequenced member within the genus Forsythia (Oleaceae). The gene order and organization of the chloroplast genome of F. suspensa are similar to other Oleaceae chloroplast genomes. The F. suspensa chloroplast genome is 156,404 bp in length, exhibits a conserved quadripartite structure with a large single-copy (LSC; 87,159 bp) region, and a small single-copy (SSC; 17,811 bp) region interspersed between inverted repeat (IRa/b; 25,717 bp) regions. A total of 114 unique genes were annotated, including 80 protein-coding genes, 30 tRNA, and four rRNA. The low GC content (37.8%) and codon usage bias for A- or T-ending codons may largely affect gene codon usage. Sequence analysis identified a total of 26 forward repeats, 23 palindrome repeats with lengths >30 bp (identity > 90%), and 54 simple sequence repeats (SSRs) with an average rate of 0.35 SSRs/kb. We predicted 52 RNA editing sites in the chloroplast of F. suspensa, all for C-to-U transitions. IR expansion or contraction and the divergent regions were analyzed among several species including the reported F. suspensa in this study. Phylogenetic analysis based on whole-plastome revealed that F. suspensa, as a member of the Oleaceae family, diverged relatively early from Lamiales. This study will contribute to strengthening medicinal resource conservation, molecular phylogenetic, and genetic engineering research investigations of this species.


Asunto(s)
Forsythia/genética , Genoma del Cloroplasto , Composición de Base , Codón/genética , Forsythia/clasificación , Inestabilidad Genómica , Repeticiones de Microsatélite , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Plantas Medicinales/clasificación , Plantas Medicinales/genética , ARN Ribosómico/genética , ARN de Transferencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA