Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(38): 17955-17966, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39258813

RESUMEN

Insight into the modulation effect of oxygen reduction reaction (ORR) active centers is of profound significance but remains a great challenge. Here, we designed Co, Fe dual-metal single-atom sites (CoFe-DSAs/NC) uniformly anchored on nitrogen-doped multiwalled carbon nanotubes for boosting ORR performance through regulating the 4d electronic orbitals of the Co-N4 active site. Mechanism studies revealed that for the first time the neighboring Fe-N4 atomic sites were able to regulate the d-band center of Co-N4 single-atom active centers while maintaining the balance of adsorption-desorption affinity for O2 and oxygen-containing species on Co-N4, thereby resulting in a superior ORR performance with a positive half-wave potential (0.90 V vs RHE). The assembled zinc-air battery based on CoFe-DSAs/NC exhibited an increased open-circuit voltage (1.48 V) and an elevated specific capacity (782.33 mAh·g-1). The work provides a new clue for reasonably designing high-performance ORR catalysts through adjusting the d-band center of active sites.

2.
J Colloid Interface Sci ; 675: 1021-1031, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39003815

RESUMEN

Development of non-noble metal-based electrocatalysts to enhance the performance of zinc-air batteries (ZABs) is of great significance, but it remains a formidable challenge due to their poor stability and activity. Herein, a bifunctional CuNi-TiOx/NCNFS electrocatalyst, featuring with electron-rich copper-nickel (CuNi) alloy nanoparticles anchored on titanium oxide/N-doped carbon nanofibers (TiOx/NCNFS), is constructed by a dual-substrate loading strategy. The introduction of TiOx has led to a significant increase in the stability of the dual-substrate. The strong electronic interaction between CuNi and TiOx strengthens the anchoring of active metal sites, thus accelerating the electron transfer. Theoretical calculations unclose that NCNFS can regulate the charge distribution of TiOx, inducing the charge transfer from NCNFS â†’ TiOx â†’ CuNi, thereby reducing the d-band center of Cu and Ni, which is beneficial to the desorption of intermediate oxide species of the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Therefore, CuNi-TiOx/NCNFS delivers a remarkable bifunctional performance with a low OER overpotential of 258 mV at 10 mA cm-2 and an ORR half-wave potential of 0.85  V. When assembled into ZABs, CuNi-TiOx/NCNFS shows a low potential gap of 0.64 V, a higher power density of 149.6 mW cm-2 at 330 mA cm-2, and an outstanding stability for 250 h at 5mA cm-2. This study provides a novel approach by constructing dual-substrate to tune the electronic structure of active metal sites for efficient rechargeable ZABs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA