Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 393
Filtrar
1.
Sci Total Environ ; 953: 176060, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245387

RESUMEN

Water resources are essential for desert oases and are key drivers of local ecological processes critical to the growth of desert vegetation. In this study, the oasis in the hinterland of the Taklamakan Desert, China, was selected as the research subject. Using high-precision classification of oasis vegetation through machine learning, surface water within the oasis was identified and extracted from multi-year Landsat remote sensing data. The spatial distribution patterns of the main community-building species, Populus euphratica and Tamarix ramosissima, were studied under different moisture gradients using environmental covariates and measured groundwater depth to invert its spatial distribution and K-mean clustering to construct surface water and groundwater moisture gradients. The results indicated that the classification accuracy for the two species reached 0.917. Gradients 1-5 were used to categorize the water resources, dividing surface water and groundwater into five gradients. Gradient 3 exhibited the optimal moisture conditions, with a high surface water distribution frequency (0.017) and shallow groundwater depth (3.158 m), while Gradient 4 showed the least optimal moisture conditions, characterized by a low surface water distribution frequency (0.008) and deep groundwater depth (4.820 m). The water gradient decreased in the following order: Gradient 3 > Gradient 5 > Gradient 1 > Gradient 2 > Gradient 4. The optimum gradients for growth of P. euphratica and T. ramosissima were gradients 5, 1, and 2. The normalized vegetation index spatial distribution patterns of the two species were consistent with that of the moisture gradient. Tamarix ramosissima was found to be more tolerant to salinity and drought than P. euphratica. Overall, this study provides valuable information on the effect of the spatial distribution of water resource gradients on oasis vegetation and can guide future water delivery policies in oases.

2.
Biol Open ; 13(9)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39263862

RESUMEN

Contemporary cardiac injury models in zebrafish larvae include cryoinjury, laser ablation, pharmacological treatment and cardiac dysfunction mutations. Although effective in damaging cardiomyocytes, these models lack the important element of myocardial hypoxia, which induces critical molecular cascades within cardiac muscle. We have developed a novel, tractable, high throughput in vivo model of hypoxia-induced cardiac damage that can subsequently be used in screening cardioactive drugs and testing recovery therapies. Our potentially more realistic model for studying cardiac arrest and recovery involves larval zebrafish (Danio rerio) acutely exposed to severe hypoxia (PO2=5-7 mmHg). Such exposure induces loss of mobility quickly followed by cardiac arrest occurring within 120 min in 5 days post fertilization (dpf) and within 40 min at 10 dpf. Approximately 90% of 5 dpf larvae survive acute hypoxic exposure, but survival fell to 30% by 10 dpf. Upon return to air-saturated water, only a subset of larvae resumed heartbeat, occurring within 4 min (5 dpf) and 6-8 min (8-10 dpf). Heart rate, stroke volume and cardiac output in control larvae before hypoxic exposure were 188±5 bpm, 0.20±0.001 nL and 35.5±2.2 nL/min (n=35), respectively. After briefly falling to zero upon severe hypoxic exposure, heart rate returned to control values by 24 h of recovery. However, reflecting the severe cardiac damage induced by the hypoxic episode, stroke volume and cardiac output remained depressed by ∼50% from control values at 24 h of recovery, and full restoration of cardiac function ultimately required 72 h post-cardiac arrest. Immunohistological staining showed co-localization of Troponin C (identifying cardiomyocytes) and Capase-3 (identifying cellular apoptosis). As an alternative to models employing mechanical or pharmacological damage to the developing myocardium, the highly reproducible cardiac effects of acute hypoxia-induced cardiac arrest in the larval zebrafish represent an alternative, potentially more realistic model that mimics the cellular and molecular consequences of an infarction for studying cardiac tissue hypoxia injury and recovery of function.


Asunto(s)
Modelos Animales de Enfermedad , Paro Cardíaco , Hipoxia , Larva , Pez Cebra , Animales , Paro Cardíaco/fisiopatología , Paro Cardíaco/etiología , Paro Cardíaco/metabolismo , Paro Cardíaco/complicaciones , Miocardio/metabolismo , Miocardio/patología , Corazón/fisiopatología , Frecuencia Cardíaca
3.
Nano Lett ; 24(34): 10451-10457, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39133810

RESUMEN

In great contrast to the numerous discoveries of superconductivity in layer-stacked graphene systems, the absence of superconductivity in the simplest monolayer graphene remains quite puzzling. Here, through realistic computation of the electronic structure, we identify a systematic trend that superconductivity emerges only upon alteration of the low-energy electronic lattice from the underlying honeycomb atomic structure. We then demonstrate that this inhibition can result from geometric frustration of the bond lattice that disables the quantum phase coherence of the order parameter residing on it. In comparison, upon deviation from the honeycomb lattice, relief of geometric frustration allows robust superfluidity with nontrivial spatial structures. For the specific examples of bilayer and trilayer graphene under an external electric field, such a bond-centered order parameter would develop superfluidity with staggered flux that breaks the time-reversal symmetry. Our study also suggests the possible realization of the long-sought superconductivity in single-layer graphene via the application of unidirectional strain.

4.
iScience ; 27(8): 110485, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39171295

RESUMEN

Mammalian hearts lose their regenerative potential shortly after birth. Stimulating the proliferation of preexisting cardiomyocytes is a potential therapeutic strategy for cardiac damage. In a previous study, we identified 30 compounds that induced the bona-fide proliferation of human iPSC-derived cardiomyocytes (hiPSC-CM). Here, we selected five active compounds with diverse targets, including ALK5 and CB1R, and performed multi-omic analyses to identify common mechanisms mediating the cell cycle progression of hiPSC-CM. Transcriptome profiling revealed the top enriched pathways for all compounds including cell cycle, DNA repair, and kinesin pathways. Functional proteomic arrays found that the compounds collectively activated multiple receptor tyrosine kinases including ErbB2, IGF1R, and VEGFR2. Network analysis integrating common transcriptomic and proteomic signatures predicted that MAPK/PI3K pathways mediated compound responses. Furthermore, VEGFR2 negatively regulated endoreplication, enabling the completion of cell division. Thus, in this study, we applied high-content imaging and molecular profiling to establish mechanisms linking pro-proliferative agents to mechanisms of cardiomyocyte cell cycling.

5.
Cells ; 13(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39195229

RESUMEN

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) constitute an appealing tool for drug discovery, disease modeling, and cardiotoxicity screening. However, their physiological immaturity, resembling CMs in the late fetal stage, limits their utility. Herein, we have developed a novel, scalable cell culture medium designed to enhance the maturation of hPSC-CMs. This medium facilitates a metabolic shift towards fatty acid utilization and augments mitochondrial function by targeting Acetyl-CoA carboxylase 2 (ACC2) with a specific small molecule inhibitor. Our findings demonstrate that this maturation protocol significantly advances the metabolic, structural, molecular and functional maturity of hPSC-CMs at various stages of differentiation. Furthermore, it enables the creation of cardiac microtissues with superior structural integrity and contractile properties. Notably, hPSC-CMs cultured in this optimized maturation medium display increased accuracy in modeling a hypertrophic cardiac phenotype following acute endothelin-1 induction and show a strong correlation between in vitro and in vivo target engagement in drug screening efforts. This approach holds promise for improving the utility and translatability of hPSC-CMs in cardiac disease modeling and drug discovery.


Asunto(s)
Acetil-CoA Carboxilasa , Diferenciación Celular , Miocitos Cardíacos , Células Madre Pluripotentes , Humanos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Acetil-CoA Carboxilasa/metabolismo , Acetil-CoA Carboxilasa/antagonistas & inhibidores , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Diferenciación Celular/efectos de los fármacos , Medios de Cultivo/farmacología , Inhibidores Enzimáticos/farmacología , Animales
6.
Huan Jing Ke Xue ; 45(6): 3341-3351, 2024 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-38897756

RESUMEN

In the context of sustainable development, it is important to thoroughly investigate the coupling mechanism between China's eco-environmental quality and human activities, as well as identify the influencing factors, in order to provide scientific references for achieving sustainable development goals in China. This study applied trend analysis, coupling coordination degree, LMDI, and optimal parameter geographic detector models to explore and evaluate the coupling mechanism between China's eco-environmental quality and human activities. The findings of the study were as follows:① During the research period, there was a growth trend in China's coupling coordination degree, human activities, and eco-environmental quality. Human activities and coupling coordination degree exhibited a spatial differentiation pattern with the Hu Line as the boundary, showing an "east high, west low" distribution. The eco-environmental quality demonstrated a "south high, north low" differentiation pattern. ② The overall trend of China's coupling coordination type transformation was shifting from lower-level to higher-level coordination types. ③ Based on the geographic detector and LMDI models, the dominant factors influencing the coupling coordination degree in most provinces east of the Hu Line were social and economic factors, as well as the comprehensive coordination index. In contrast, the dominant factors in most provinces west of the Hu Line were natural environmental factors and coupling degree. ④ The evaluation of the impact of changes in human activities on eco-environmental quality revealed that the regions east of the Hu Line were mainly characterized by favorable development and effective protection, whereas the regions west of the line were mainly characterized by destructive development and ineffective protection. It is suggested that the regions on both sides of the Hu Line should prioritize development based on local prerequisites influencing the coupling coordination degree and the relative relationship between human activities and eco-environmental quality. It is crucial to actively adjust development strategies and pursue a sustainable development path towards the high-level coordination between eco-environmental quality and human activities.


Asunto(s)
Conservación de los Recursos Naturales , Actividades Humanas , China , Humanos , Ecosistema , Monitoreo del Ambiente/métodos , Desarrollo Sostenible , Modelos Teóricos , Ambiente
7.
Mitochondrial DNA B Resour ; 9(6): 720-724, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38859915

RESUMEN

Polygonatum hunanense H.H. Liu & B.Z. Wang (2021) and P. verticillatum (L.) All. (1875) have been widely used as foods and as folk medicines in China and India, and P. caulialatum S. R. Yi (2021) has recently been described as a new medical plant in China. There is at present a lack of genome information regarding the species. Hence, this study reports the complete chloroplast genomes of the three species. The genomes of P. hunanense, P. verticillatum, and P. caulialatum were 155,583 bp, 155,650 bp, and 155,352 bp in length, respectively. They contained large single-copy (LSC) regions of 84,412 bp, 84,404 bp, and 84,285 bp, small single-copy (SSC) regions of 18,427 bp, 18,416 bp, and 18,463 bp, and a pair of inverted repeats of 26,372 bp, 26,415 bp, and 26,302 bp, respectively. The chloroplast genomes of P. hunanense, P. verticillatum, and P. caulialatum had 133 (103 unique) genes, consisting of 87 protein-coding genes, 38 ribosomal ribonucleic acid (RNA) genes, and eight transfer RNA genes, respectively. A maximum-likelihood phylogenetic tree showed that P. kingianum Coll. et Hemsl. var. grandifolium D.M. Liu & W.Z. Zeng (1991) was closer to P. cyrtonema Hua (1892) rather than to P. kingianum Coll. et Hemsl. (1890), further supporting its status as a unique species of the genus. Moreover, P. verticillatum was separated from the easily confused herb P. cirrhifolium (Wall.) Royle (1839), while P. caulialatum was closest to P. humile Fisch. ex Maxim. (1859). This research provides a foundation for further study of these herbs.

8.
J Extracell Vesicles ; 13(5): e12445, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38711334

RESUMEN

Small extracellular vesicles (sEV) derived from various cell sources have been demonstrated to enhance cardiac function in preclinical models of myocardial infarction (MI). The aim of this study was to compare different sources of sEV for cardiac repair and determine the most effective one, which nowadays remains limited. We comprehensively assessed the efficacy of sEV obtained from human primary bone marrow mesenchymal stromal cells (BM-MSC), human immortalized MSC (hTERT-MSC), human embryonic stem cells (ESC), ESC-derived cardiac progenitor cells (CPC), human ESC-derived cardiomyocytes (CM), and human primary ventricular cardiac fibroblasts (VCF), in in vitro models of cardiac repair. ESC-derived sEV (ESC-sEV) exhibited the best pro-angiogenic and anti-fibrotic effects in vitro. Then, we evaluated the functionality of the sEV with the most promising performances in vitro, in a murine model of MI-reperfusion injury (IRI) and analysed their RNA and protein compositions. In vivo, ESC-sEV provided the most favourable outcome after MI by reducing adverse cardiac remodelling through down-regulating fibrosis and increasing angiogenesis. Furthermore, transcriptomic, and proteomic characterizations of sEV derived from hTERT-MSC, ESC, and CPC revealed factors in ESC-sEV that potentially drove the observed functions. In conclusion, ESC-sEV holds great promise as a cell-free treatment for promoting cardiac repair following MI.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Infarto del Miocardio , Miocitos Cardíacos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Humanos , Animales , Ratones , Infarto del Miocardio/terapia , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Fibroblastos/metabolismo , Masculino , Daño por Reperfusión Miocárdica/terapia , Daño por Reperfusión Miocárdica/metabolismo , Modelos Animales de Enfermedad , Neovascularización Fisiológica , Células Cultivadas
9.
Phys Rev Lett ; 132(16): 166901, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38701473

RESUMEN

Twisted bilayer graphene (TBG) is a recently discovered two-dimensional superlattice structure which exhibits strongly correlated quantum many-body physics, including strange metallic behavior and unconventional superconductivity. Most of TBG exotic properties are connected to the emergence of a pair of isolated and topological flat electronic bands at the so-called magic angle, θ≈1.05°, which are nevertheless very fragile. In this work, we show that, by employing chiral optical cavities, the topological flat bands can be stabilized away from the magic angle in an interval of approximately 0.8°<θ<1.3°. As highlighted by a simplified theoretical model, time reversal symmetry breaking (TRSB), induced by the chiral nature of the cavity, plays a fundamental role in flattening the isolated bands and gapping out the rest of the spectrum. Additionally, TRSB suppresses the Berry curvature and induces a topological phase transition, with a gap closing at the Γ point, towards a band structure with two isolated flat bands with Chern number equal to 0. The efficiency of the cavity is discussed as a function of the twisting angle, the light-matter coupling and the optical cavity characteristic frequency. Our results demonstrate the possibility of engineering flat bands in TBG using optical devices, extending the onset of strongly correlated topological electronic phases in moiré superlattices to a wider range in the twisting angle.

10.
Sci Rep ; 14(1): 12177, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806609

RESUMEN

Heart failure remains a leading cause of mortality. Therapeutic intervention for heart failure would benefit from targeted delivery to the damaged heart tissue. Here, we applied in vivo peptide phage display coupled with high-throughput Next-Generation Sequencing (NGS) and identified peptides specifically targeting damaged cardiac tissue. We established a bioinformatics pipeline for the identification of cardiac targeting peptides. Hit peptides demonstrated preferential uptake by human induced pluripotent stem cell (iPSC)-derived cardiomyocytes and immortalized mouse HL1 cardiomyocytes, without substantial uptake in human liver HepG2 cells. These novel peptides hold promise for use in targeted drug delivery and regenerative strategies and open new avenues in cardiovascular research and clinical practice.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Péptidos , Humanos , Animales , Ratones , Miocitos Cardíacos/metabolismo , Péptidos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Biblioteca de Péptidos , Células Hep G2 , Técnicas de Visualización de Superficie Celular/métodos , Sistemas de Liberación de Medicamentos , Secuenciación de Nucleótidos de Alto Rendimiento , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/terapia
11.
Mater Today Bio ; 25: 100969, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38318478

RESUMEN

Completely synthetic cell cultivation materials for human pluripotent stem cells (hPSCs) are important for the future clinical use of hPSC-derived cells. Currently, cell culture materials conjugated with extracellular matrix (ECM)-derived peptides are being prepared using only one specific integrin-targeting peptide. We designed dual peptide-conjugated hydrogels, for which each peptide was selected from different ECM sites: the laminin ß4 chain and fibronectin or vitronectin, which can target α6ß1 and α2ß1 or αVß5. hPSCs cultured on dual peptide-conjugated hydrogels, especially on hydrogels conjugated with peptides obtained from the laminin ß4 chain and vitronectin with a low peptide concentration of 200 µg/mL, showed high proliferation ability over the long term and differentiated into cells originating from 3 germ layers in vivo as well as a specific lineage of cardiac cells. The design of grafting peptides was also important, for which a joint segment and positive amino acids were added into the designed peptide. Because of the designed peptides on the hydrogels, only 200 µg/mL peptide solution was sufficient for grafting on the hydrogels, and the hydrogels supported hPSC cultures long-term; in contrast, in previous studies, greater than 1000 µg/mL peptide solution was needed for the grafting of peptides on cell culture materials.

13.
Acta Pharmacol Sin ; 45(1): 87-97, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37679644

RESUMEN

Recent evidence shows a close link between Parkinson's disease (PD) and cardiac dysfunction with limited treatment options. Mitophagy plays a crucial role in the control of mitochondrial quantity, metabolic reprogramming and cell differentiation. Mutation of the mitophagy protein Parkin is directly associated with the onset of PD. Parkin-independent receptor-mediated mitophagy is also documented such as BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) and FUN14 domain containing 1 (FUNDC1) for receptor-mediated mitophagy. In this study we investigated cardiac function and mitophagy including FUNDC1 in PD patients and mouse models, and evaluated the therapeutic potential of a SGLT2 inhibitor empagliflozin. MPTP-induced PD model was established. PD patients and MPTP mice not only displayed pronounced motor defects, but also low plasma FUNDC1 levels, as well as cardiac ultrastructural and geometric anomalies (cardiac atrophy, interstitial fibrosis), functional anomalies (reduced E/A ratio, fractional shortening, ejection fraction, cardiomyocyte contraction) and mitochondrial injury (ultrastructural damage, UCP2, PGC1α, elevated mitochondrial Ca2+ uptake proteins MCU and VDAC1, and mitochondrial apoptotic protein calpain), dampened autophagy, FUNDC1 mitophagy and apoptosis. By Gene set enrichment analysis (GSEA), we found overtly altered glucose transmembrane transport in the midbrains of MPTP-treated mice. Intriguingly, administration of SGLT2 inhibitor empagliflozin (10 mg/kg, i.p., twice per week for 2 weeks) in MPTP-treated mice significantly ameliorated myocardial anomalies (with exception of VDAC1), but did not reconcile the motor defects or plasma FUNDC1. FUNDC1 global knockout (FUNDC1-/- mice) did not elicit any phenotype on cardiac geometry or function in the absence or presence of MPTP insult, but it nullified empagliflozin-caused cardioprotection against MPTP-induced cardiac anomalies including remodeling (atrophy and fibrosis), contractile dysfunction, Ca2+ homeostasis, mitochondrial (including MCU, mitochondrial Ca2+ overload, calpain, PARP1) and apoptotic anomalies. In neonatal and adult cardiomyocytes, treatment with PD neurotoxin preformed fibrils of α-synuclein (PFF) caused cytochrome c release and cardiomyocyte mechanical defects. These effects were mitigated by empagliflozin (10 µM) or MCU inhibitor Ru360 (10 µM). MCU activator kaempferol (10 µM) or calpain activator dibucaine (500 µM) nullified the empagliflozin-induced beneficial effects. These results suggest that empagliflozin protects against PD-induced cardiac anomalies, likely through FUNDC1-mediated regulation of mitochondrial integrity.


Asunto(s)
Enfermedad de Parkinson , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Adulto , Humanos , Ratones , Animales , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Calpaína , Remodelación Ventricular , Proteínas Mitocondriales/metabolismo , Ubiquitina-Proteína Ligasas , Atrofia , Fibrosis , Proteínas de la Membrana/metabolismo
14.
Circulation ; 149(2): 135-154, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38084582

RESUMEN

BACKGROUND: Endothelial cell (EC) generation and turnover by self-proliferation contributes to vascular repair and regeneration. The ability to accurately measure the dynamics of EC generation would advance our understanding of cellular mechanisms of vascular homeostasis and diseases. However, it is currently challenging to evaluate the dynamics of EC generation in large vessels such as arteries because of their infrequent proliferation. METHODS: By using dual recombination systems based on Cre-loxP and Dre-rox, we developed a genetic system for temporally seamless recording of EC proliferation in vivo. We combined genetic recording of EC proliferation with single-cell RNA sequencing and gene knockout to uncover cellular and molecular mechanisms underlying EC generation in arteries during homeostasis and disease. RESULTS: Genetic proliferation tracing reveals that ≈3% of aortic ECs undergo proliferation per month in adult mice during homeostasis. The orientation of aortic EC division is generally parallel to blood flow in the aorta, which is regulated by the mechanosensing protein Piezo1. Single-cell RNA sequencing analysis reveals 4 heterogeneous aortic EC subpopulations with distinct proliferative activity. EC cluster 1 exhibits transit-amplifying cell features with preferential proliferative capacity and enriched expression of stem cell markers such as Sca1 and Sox18. EC proliferation increases in hypertension but decreases in type 2 diabetes, coinciding with changes in the extent of EC cluster 1 proliferation. Combined gene knockout and proliferation tracing reveals that Hippo/vascular endothelial growth factor receptor 2 signaling pathways regulate EC proliferation in large vessels. CONCLUSIONS: Genetic proliferation tracing quantitatively delineates the dynamics of EC generation and turnover, as well as EC division orientation, in large vessels during homeostasis and disease. An EC subpopulation in the aorta exhibits more robust cell proliferation during homeostasis and type 2 diabetes, identifying it as a potential therapeutic target for vascular repair and regeneration.


Asunto(s)
Diabetes Mellitus Tipo 2 , Factor A de Crecimiento Endotelial Vascular , Animales , Ratones , Factor A de Crecimiento Endotelial Vascular/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Aorta/metabolismo , Células Endoteliales/metabolismo , Homeostasis , Canales Iónicos/metabolismo
15.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1022602

RESUMEN

Objective:To investigate the diagnostic value of serum homocysteine(Hcy),soluble stromelysin 2(sST2)and cystatin C(CysC)for chronic heart failure(CHF).Methods:A total of 86 CHF patients admitted in our hospital were se-lected as CHF group,and 86 healthy individuals who underwent physical examination simultaneously were selected as healthy control group.Serum levels of Hcy,sST2 and CysC,plasma level of N terminal pro brain natriuretic peptide(NT-proBNP)and cardiac function indexes[left atrial diameter(LAD),left ventricular end diastolic diameter(LVEDd),left ventricular ejection fraction(LVEF)]were measured between two groups.Pearson correlation analysis was used to analyze the correlation among serum Hcy,sST2,CysC,plasma NT-proBNP and cardiac function indexes.Receiver operating characteristic curve(ROC)was drawn to evaluate the diagnostic value of serum Hcy,sST2 and CysC and their combined detection for CHF.Results:Compared with healthy control group,there were significant rise in scrum levels of Hcy,sST2 and CysC,plasma NT-proBNP level,LAD and LVEDd,and significant reduction in LVEF in CHF group,P=0.001 all.Pearson correlation analysis indicated that serum Hcy,sST2 and CysC levels were significant positively correlated with plas-ma NT-proBNP level,LAD and LVEDd(r=0.385~0.511,P<0.05 or<0.01),and significant inversely correlated with LVEF(r=-0.424~-0.402,P<0.05 all).AUC of single detection of serum Hcy,sST2 and CysC diagnosing CHF was 0.624,0.720 and 0.870 respectively,and AUC of their combination was 0.865,which was significantly higher than any single detection,P<0.05 or<0.01.Conclusion:Serum levels of Hcy,sST2 and CysC abnormally increase in CHF patients,which can be used as auxiliary diagnostic indexes for CHF.The triple combined detection is of great signifi-cance for the diagnosis of CHF.

16.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1025484

RESUMEN

Objective:To describe and analyze suicide risk of patients with schizophrenia,major depressive disorder,and bipolar disorder.Methods:A total of 2 016 patients with schizophrenia,903 patients with major de-pressive disorder,and 381 patients with bipolar disorder from inpatients,clinics,or communities who met the diag-nostic criteria of the Diagnostic and Statistical Manual of Mental Disorders,Fifth Edition were recruited.All patients were interviewed by psychiatrists using the Mini International Neuropsychiatric Interview to diagnose mental disor-ders and assess suicide risk,as well as Clinical-Rated Dimensions of Psychosis Symptom Severity(CRDPSS)to as-sess symptoms.Differences and risk factors of suicide risk among three types of mental disorders were explored u-sing multivariate logistic regression analysis.Results:In the past one month,37 patients with schizophrenia(1.8%),516 patients with major depressive disorder(57.1%),and 102 patients with bipolar disorder(26.8%)had suicide risk.Compared with patients with schizophrenia,suicide risk in patients with major depressive disorder(OR=36.50)and bipolar disorder(OR=20.10)increased.Female(OR=1.87),smoking(OR=1.76),family history of suicide(OR=5.09),higher score of CRDPSS hallucination(OR=1.80),and higher score of CRDPSS depression(OR=1.54)were risk factors of suicide risk of patients.Conclusions:Suicide risk of patients with ma-jor depressive disorder and bipolar disorder is higher than that of patients with schizophrenia.In clinical practice,it is important to regularly assess suicide risk of patients.Patients who experience symptoms of hallucination and de-pression should be paid more attention to.

17.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1026922

RESUMEN

Objective To analyze the characteristics and distribution of TCM syndromes of advanced gastric cancer;To provide reference for the standardization and clinical research of TCM syndromes of advanced gastric cancer.Methods The four diagnosis information with advanced gastric cancer was retrospectively collected at Dongzhimen Hospital of Beijing University of Chinese Medicine from January 2010 to December 2020.And the investigation results were analyzed by combining principal component analysis and clustering analysis,so as to explore the distribution pattern of TCM syndromes of advanced gastric cancer.Results Totally 164 patients were included,involving 601 case-times.10 principal components were obtained through principal component analysis on 29 items of four diagnosis information.The four diagnosis information with factor coefficient>0.4 were selected and allocated to the 10 principal components.Then,based on the results of principal component analysis,clustering analysis was conducted to obtain the distribution proportion of the three types of TCM syndromes.According to the syndrome differentiation by professional clinicians,the results were followed by the frequency distribution as cold coagulation and blood stasis(356,59.28%),stomach yin deficiency(145,24.17%)and phlegm-heat accumulation(100,16.55%).Conclusion There are three basic TCM syndromes of advanced gastric cancer,which are cold coagulation and blood stasis,stomach yin deficiency and phlegm-heat accumulation.Cold coagulation and blood stasis occupies the largest proportion,and the treatment should be based on warming the middle to dissipate cold and promoting blood circulation to remove blood stasis.

18.
Org Lett ; 26(1): 416-420, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38160397

RESUMEN

A reductive amidation of triazine esters with nitroarenes by using cheap iron as a reducing metal in the presence of TMSCl in DMF was developed. The reactions proceeded efficiently under transition metal-free conditions to give the corresponding amides in moderate to good yields with good functional group compatibility. Preliminary mechanistic investigations indicated that nitrosobenzene, N-phenyl hydroxylamine, azoxybenzene, azobenzene, aniline, and N-arylformamide possibly served as the intermediates of the reaction.

19.
Phys Rev Lett ; 131(22): 223601, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101368

RESUMEN

A material with symmetry breaking inside can transmit the symmetry breaking to its vicinity by vacuum electromagnetic fluctuations. Here, we show that vacuum quantum fluctuations proximate to a parity-symmetry-broken material can induce a chirality-dependent spectral shift of chiral molecules, resulting in a chemical reaction process that favors producing one chirality over the other. We calculate concrete examples and evaluate the chirality production rate with experimentally realizable parameters, showing the promise of selecting chirality with symmetry-broken vacuum quantum fluctuations.

20.
Plant Mol Biol ; 113(4-5): 193-204, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37878187

RESUMEN

Cymbidium ensifolium is one of the national orchids in China, which has high ornamental value with changeable flower colors. To understand the formation mechanism of different flower colors of C. ensifolium, this research conducted transcriptome and metabolome analyses on four different colored sepals of C. ensifolium. Metabolome analysis detected 204 flavonoid metabolites, including 17 polyphenols, 27 anthocyanins, 75 flavones, 34 flavonols, 25 flavonoids, 18 flavanones, and 8 isoflavones. Among them, purple-red and red sepals contain a lot of anthocyanins, including cyanidin, pelargonin, and paeoniflorin, while yellow-green and white sepals have less anthocyanins detected, and their metabolites are mainly flavonols, flavanones and flavonoids. Transcriptome sequencing analysis showed that the expression levels of the anthocyanin biosynthetic enzyme genes in red and purple-red sepals were significantly higher than those in white and yellow-green sepals of C. ensifolium. The experimental results showed that CeF3'H2, CeDFR, CeANS, CeF3H and CeUFGT1 may be the key genes involved in anthocyanin production in C. ensifolium sepals, and CeMYB104 has been proved to play an important role in the flower color formation of C. ensifolium. The results of transformation showed that the CeMYB104 is involved in the synthesis of anthocyanins and can form a purple-red color in the white perianth of Phalaenopsis. These findings provide a theoretical reference to understand the formation mechanism of flower color in C. ensifolium.


Asunto(s)
Flavanonas , Orchidaceae , Antocianinas , Transcriptoma , Flavonoides/metabolismo , Flores/genética , Flores/metabolismo , Flavonoles , Orchidaceae/genética , Orchidaceae/metabolismo , Flavanonas/metabolismo , Color , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA