Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Signal ; : 111415, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293743

RESUMEN

The MAPK and PI3K/AKT/mTOR pathways are aberrantly activated in non-small cell lung cancer (NSCLC) patients, but therapeutic efficacy of NSCLC using trametinib (MEK inhibitor) or BEZ-235 (dual PI3K/mTOR inhibitor) alone is still unsatisfactory. Therefore, in this study, we aimed to determine whether the combination of trametinib with BEZ-235 exerted synergistic effects against NSCLC in both in vitro and in vivo models, and we preliminarily explored the effect of this combination therapy on glucose metabolism. Our results showed that trametinib combined with BEZ-235 could better inhibit cell proliferation and colony formation, induce G0/G1 phase arrest and apoptosis, and suppress cell invasion and migration compared with the single agent. The combination index demonstrated that trametinib and BEZ-235 exerted strong synergistic effects. Additionally, trametinib and BEZ-235 exhibited synergistic antitumor effects in vivo. Furthermore, trametinib and BEZ-235 synergistically downregulated the expression of related proteins in the MAPK and PI3K/AKT/mTOR pathways, and decreased glucose consumption and lactic acid production through suppressing the expressions of glucose transporter 1 (GLUT1) and lactate dehydrogenase A (LDHA). These data imply that simultaneous inhibition of the MAPK and PI3K/AKT/mTOR pathways using trametinib combined with BEZ-235 could synergistically impair glucose metabolism, resulting in an obvious synergistic therapeutic effect against NSCLC.

2.
Molecules ; 29(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731452

RESUMEN

In this study, two "on-off" probes (BF2-cur-Ben and BF2-cur-But) recognizing acetylcholinesterase (AChE) were designed and synthesized. The obtained probes can achieve recognition of AChE with good selectivity and pH-independence with a linear range of 0.5~7 U/mL and 0.5~25 U/mL respectively. BF2-cur-Ben has a lower limit of detection (LOD) (0.031 U/mL), higher enzyme affinity (Km = 16 ± 1.6 µM), and higher inhibitor sensitivity. A responsive mechanism of the probes for AChE was proposed based on HPLC and mass spectra (MS) experiments, as well as calculations. In molecular simulation, BF2-cur-Ben forms more hydrogen bonds (seven, while BF2-cur-But has only four) and thus has a more stable enzyme affinity, which is mirrored by the results of the comparison of Km values. These two probes could enable recognition of intracellular AChE and probe BF2-cur-Ben has superior cell membrane penetration due to its higher log p value. These probes can monitor the overexpression of AChE during apoptosis of lung cancer cells. The ability of BF2-cur-Ben to monitor AChE in vivo was confirmed by a zebrafish experiment.


Asunto(s)
Acetilcolinesterasa , Colorantes Fluorescentes , Animales , Humanos , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Límite de Detección , Pez Cebra
3.
Talanta ; 274: 126060, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604044

RESUMEN

In this study, a lysosomal targeting fluorescent probe recognition on CEs was designed and synthesized. The obtained probe BF2-cur-Mor demonstrated excellent selectivity, sensitivity, pH-independence, and enzyme affinity towards CEs within 5 min. BF2-cur-Mor could enable recognition of intracellular CEs and elucidate that the CEs content of different cancer cells follows the rule of HepG2 > HCT-116 > A549 > HeLa, and the CEs expression level of hepatoma cancer cells far exceeds that of normal hepatic cells, being in good agreement with the previous reports. The ability of BF2-cur-Mor to monitor CEs in vivo was confirmed by zebrafish experiment. BF2-cur-Mor exhibits some pharmacological activity in that it can induce apoptosis in hepatocellular carcinoma cells but is weaker in normal hepatocyte cells, being expected to be a potential "diagnostic and therapeutic integration" tool for the clinical diagnosis of CEs-related diseases.


Asunto(s)
Colorantes Fluorescentes , Pez Cebra , Humanos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Animales , Carboxilesterasa/metabolismo , Carboxilesterasa/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Diseño de Fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA