Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 427
Filtrar
2.
Network ; : 1-28, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39257285

RESUMEN

Public safety is a critical concern, typically addressed through security checks at entrances of public places, involving trained officers or X-ray scanning machines to detect prohibited items. However, many places like hospitals, schools, and event centres lack such resources, risking security breaches. Even with X-ray scanners or manual checks, gaps can be exploited by individuals with malicious intent, posing significant security risks. Additionally, traditional methods, relying on manual inspections and conventional image processing techniques, are often inefficient and prone to high error rates. To mitigate these risks, we propose a real-time detection model - EnhanceNet using a customized Scale-Enhanced Pooling Network (SEP-Net) integrated into the YOLOv4. The innovative SEP-Net enhances feature representation and localization accuracy, significantly contributing to the model's efficacy in detecting prohibited items. We annotated a custom dataset of nine classes and evaluated our models using different input sizes (608 and 416). The 608 input size achieved a mean Average Precision (mAP) of 74.10% with a detection speed of 22.3 Frames per Second (FPS). The 416 input size showed superior performance, achieving a mAP of 76.75% and a detection speed of 27.1 FPS. These demonstrate that our models are accurate and efficient, making them suitable for real-time applications.

3.
Heliyon ; 10(17): e36564, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39263109

RESUMEN

Background: Suicide ideation has high prevalence in adolescents, better future time perspective is considered a protective role for anxiety, depression, and suicide ideation. However, the impact of future time perspective on suicide ideation remains unclear, especially when anxiety and depression as mediating roles. Methods: A cross-sectional study of college students was performed in Chongqing, China. There are 851 students enrolled in this study and we distribute questionnaires through the WeChat platform to obtain data in 2023. We conducted Pearson correlation analysis and descriptive statistics. Model 6 in PROCESS 4.0 was used to test the multiple mediating effect. Results: College students who have higher future time perspective are associated with a lower risk of anxiety, depression, and suicide ideation. Future time perspective not only affects suicide ideation directly, but also influence it by means of two mediating pathways: ①depression, the mediation effect is 37.41 %; ②the multiple mediating effects of anxiety and depression with a mediating effect of 29.68 %. Conclusion: Higher future time perspective functions as a protective role in anxiety, depression, and suicide ideation; future time perspective can affect and predict the occurrence of suicide ideation by influencing anxiety and depression in college students. This conclusion will be a novel and insightful part of adolescent mental health research, and provide a new perspective to prevent college students from committing suicide in the future.

4.
Nat Commun ; 15(1): 6756, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117613

RESUMEN

Renal dysfunction (RD) often characterizes the worse course of patients with advanced heart failure (AHF). Many prognosis assessments are hindered by researcher biases, redundant predictors, and lack of clinical applicability. In this study, we enroll 1736 AHF/RD patients, including data from Henan Province Clinical Research Center for Cardiovascular Diseases (which encompasses 11 hospital subcenters), and Beth Israel Deaconess Medical Center. We developed an AI hybrid modeling framework, assembling 12 learners with different feature selection paradigms to expand modeling schemes. The optimized strategy is identified from 132 potential schemes to establish an explainable survival assessment system: AIHFLevel. The conditional inference survival tree determines a probability threshold for prognostic stratification. The evaluation confirmed the system's robustness in discrimination, calibration, generalization, and clinical implications. AIHFLevel outperforms existing models, clinical features, and biomarkers. We also launch an open and user-friendly website www.hf-ai-survival.com , empowering healthcare professionals with enhanced tools for continuous risk monitoring and precise risk profiling.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Insuficiencia Cardíaca/mortalidad , Insuficiencia Cardíaca/fisiopatología , Masculino , Femenino , Anciano , Pronóstico , Persona de Mediana Edad , Inteligencia Artificial , Medición de Riesgo/métodos , Análisis de Supervivencia , Insuficiencia Renal/mortalidad , Insuficiencia Renal/fisiopatología , Insuficiencia Renal/diagnóstico , Biomarcadores
5.
Chem Commun (Camb) ; 60(73): 9978-9981, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39172472

RESUMEN

Three photoactive Cd(II) coordination polymers (CPs), [Cd (Fsbpe)(DBBA)2]·2DMF (CP1), [Cd(Fepbpe)(DBBA)2]·2DMF (CP2) and [Cd(Fsbpeb)(DBBA)2] (CP3) (DBBA = 3,5-dibromobenzoic acid, DMF = dimethyl formamide) with similar 1D chain motifs exhibited completely different photosalient behaviors (PS) in response to UV light. Mechanical motion was triggered by [2+2] photocycloaddition and regulated by positioning of the photoactive alkene centers relative to the crystal axis. This solid-state reaction was reversed by heating and photomechanical behaviour was repeated over several cycles. A simple photoactuating device was prepared using a CP3-PVA composite.

6.
Infection ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152290

RESUMEN

Next-generation sequencing (NGS) has revolutionized clinical microbiology, particularly in diagnosing respiratory infectious diseases and conducting epidemiological investigations. This narrative review summarizes conventional methods for routine respiratory infection diagnosis, including culture, smear microscopy, immunological assays, image techniques as well as polymerase chain reaction(PCR). In contrast to conventional methods, there is a new detection technology, sequencing technology, and here we mainly focus on the next-generation sequencing NGS, especially metagenomic NGS(mNGS). NGS offers significant advantages over traditional methods. Firstly, mNGS eliminates assumptions about pathogens, leading to faster and more accurate results, thus reducing diagnostic time. Secondly, it allows unbiased identification of known and novel pathogens, offering broad-spectrum coverage. Thirdly, mNGS not only identifies pathogens but also characterizes microbiomes, analyzes human host responses, and detects resistance genes and virulence factors. It can complement targeted sequencing for bacterial and fungal classification. Unlike traditional methods affected by antibiotics, mNGS is less influenced due to the extended survival of pathogen DNA in plasma, broadening its applicability. However, barriers to full integration into clinical practice persist, primarily due to cost constraints and limitations in sensitivity and turnaround time. Despite these challenges, ongoing advancements aim to improve cost-effectiveness and efficiency, making NGS a cornerstone technology for global respiratory infection diagnosis.

7.
Chin Med J Pulm Crit Care Med ; 2(2): 95-105, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39169934

RESUMEN

Cancer cachexia is a multifactorial syndrome characterized by loss of body weight secondary to skeletal muscle atrophy and adipose tissue wasting. It not only has a significant impact on patients' quality of life but also reduces the effectiveness and tolerability of anticancer therapy, leading to poor clinical outcomes. Lung cancer is a prominent global health concern, and the prevalence of cachexia is high among patients with lung cancer. In this review, we integrate findings from studies of lung cancer and other types of cancer to provide an overview of recent advances in cancer cachexia. Our focus includes topics such as the clinical criteria for diagnosis and staging, the function and mechanism of selected mediators, and potential therapeutic strategies for clinical application. A comprehensive summary of current studies will improve our understanding of the mechanisms underlying cachexia and contribute to the identification of high-risk patients, the development of effective treatment strategies, and the design of appropriate therapeutic regimens for patients at different disease stages.

8.
Front Microbiol ; 15: 1437274, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39206371

RESUMEN

Light and nitrogen availability are basic requirements for photosynthesis. Changing in light intensity and nitrogen concentration may require adaptive physiological and life process changes in phytoplankton cells. Our previous study demonstrated that two Thalassiosira species exhibited, respectively, distinctive physiological responses to light and nitrogen stresses. Transcriptomic analyses were employed to investigate the mechanisms behind the different physiological responses observed in two diatom species of the genus Thalassiosira. The results indicate that the congeneric species are different in their cellular responses to the same shifting light and nitrogen conditions. When conditions changed to high light with low nitrate (HLLN), the large-celled T. punctigera was photodamaged. Thus, the photosynthesis pathway and carbon fixation related genes were significantly down-regulated. In contrast, the small-celled T. pseudonana sacrificed cellular processes, especially amino acid metabolisms, to overcome the photodamage. When changing to high light with high nitrate (HLHN) conditions, the additional nitrogen appeared to compensate for the photodamage in the large-celled T. punctigera, with the tricarboxylic acid cycle (TCA cycle) and carbon fixation significantly boosted. Consequently, the growth rate of T. punctigera increased, which suggest that the larger-celled species is adapted for forming post-storm algal blooms. The impact of high light stress on the small-celled T. pseudonana was not mitigated by elevated nitrate levels, and photodamage persisted.

9.
Asian J Androl ; 26(5): 500-509, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39012524

RESUMEN

ABSTRACT: Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is highly prevalent worldwide and poses a significant threat to men's health, particularly affecting young men. However, the exact causes and mechanisms behind CP/CPPS remain unclear, leading to challenges in its treatment. In this research, a CP/CPPS rat model was established with complete Freund's adjuvant (CFA), and berberine hydrochloride was administered through daily gavage to assess its therapeutic effects. The alterations in the gut microbiome induced by CP/CPPS and berberine hydrochloride were investigated through 16S ribosomal RNA sequencing of cecum content and colonic epithelial cells. To investigate the impact of the gut microbiome on CP/CPPS, a pseudo germ-free rat model was established, and fecal microbiome transplantation (FMT) was performed on these rats. In all, berberine hydrochloride demonstrated effective reduction of inflammation and oxidative stress in the prostate, offering significant therapeutic advantages for CP/CPPS. Through analysis of the gut microbiome using 16S ribosome RNA sequencing, distinct differences were observed between CP/CPPS rats and control rats, and Clostridium butyricum was identified as a key bacteria. Pseudo germ-free rats that underwent FMT from CP/CPPS rats or rats treated with berberine hydrochloride displayed varying levels of inflammatory cytokine production, oxidative stress, and activity of associated signaling pathways. In conclusion, the therapeutic potential of berberine hydrochloride in addressing CP/CPPS is highly significant. The gut microbiome has emerged as a critical factor in the development of CP/CPPS and plays a pivotal role in mediating the therapeutic effects of berberine hydrochloride.


Asunto(s)
Berberina , Microbioma Gastrointestinal , Prostatitis , Ratas Sprague-Dawley , Transducción de Señal , Berberina/farmacología , Berberina/uso terapéutico , Masculino , Animales , Prostatitis/microbiología , Prostatitis/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos , Dolor Pélvico/tratamiento farmacológico , Dolor Pélvico/terapia , Trasplante de Microbiota Fecal , Modelos Animales de Enfermedad , Estrés Oxidativo/efectos de los fármacos , Dolor Crónico/tratamiento farmacológico , Próstata/efectos de los fármacos , Próstata/microbiología , ARN Ribosómico 16S/genética
10.
Comput Biol Med ; 179: 108847, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39004046

RESUMEN

The UNet architecture, which is widely used for biomedical image segmentation, has limitations like blurred feature maps and over- or under-segmented regions. To overcome these limitations, we propose a novel network architecture called MACCoM (Multiple Attention and Convolutional Cross-Mixer) - an end-to-end depthwise encoder-decoder fully convolutional network designed for binary and multi-class biomedical image segmentation built upon deeperUNet. We proposed a multi-scope attention module (MSAM) that allows the model to attend to diverse scale features, preserving fine details and high-level semantic information thus useful at the encoder-decoder connection. As the depth increases, our proposed spatial multi-head attention (SMA) is added to facilitate inter-layer communication and information exchange, enabling the network to effectively capture long-range dependencies and global context. MACCoM is also equipped with a convolutional cross-mixer we proposed to enhance the feature extraction capability of the model. By incorporating these modules, we effectively combine semantically similar features and reduce artifacts during the early stages of training. Experimental results on 4 biomedical datasets crafted from 3 datasets of varying modalities consistently demonstrate that MACCoM outperforms or matches state-of-the-art baselines in the segmentation tasks. With Breast Ultrasound Image (BUSI), MACCoM recorded 99.06 % Jaccard, 77.58 % Dice, and 93.92 % Accuracy, while recording 99.50 %, 98.44 %, and 99.29 % respectively for Jaccard, Dice, and Accuracy on the Chest X-ray (CXR) images used. The Jaccard, Dice, and Accuracy for the High-Resolution Fundus (HRF) images are 95.77 %, 74.35 %, and 95.95 % respectively. The findings here highlight MACCoM's effectiveness in improving segmentation performance and its valuable potential in image analysis.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Femenino , Algoritmos , Bases de Datos Factuales
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124753, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38963949

RESUMEN

Acute pyelonephritis (AP) is a severe urinary tract infection (UTI) syndrome with a large population of patients worldwide. Current approaches to confirming AP are limited to urinalysis, radiological imaging methods and histological assessment. Fourier transform infrared (FTIR) microspectroscopy is a promising label-free modality that can offer information about both morphological and molecular pathologic alterations from biological tissues. Here, FTIR microspectroscopy serves to investigate renal biological histology of a rat model with AP and classify normal cortex, normal medulla and infected acute pyelonephritis tissues. The spectra were experimentally collected by FTIR with an infrared Globar source through raster scanning procedure. Unsupervised analysis methods, including integrating, clustering and principal component analysis (PCA) were performed on such spectra data to form infrared histological maps of entire kidney section. In comparison to Hematoxylin & Eosin-stained results of the adjacent tissue sections, these infrared maps were proved to enable the differentiation of the renal tissue types. The results of both integration and clustering indicated that the concentration of amide II decreases in the infected acute pyelonephritis tissues, with an increased presence of nucleic acids and lipids. By means of PCA, the infected tissue was linearly separated from normal ones by plotting confident ellipses with the score values of the first and second principal components. Moreover, supervised analysis was performed based on the supported vector machines (SVM). Normal cortex, normal medulla and infected acute pyelonephritis tissues were classified by SVM models with the best accuracy of 96.11% in testing dataset. In addition, these analytical methods were further employed on synchrotron-based FTIR spectra data and successfully form high-resolution infrared histological maps of glomerulus and necrotic cell mass. This work demonstrates that FTIR microspectroscopy will be a powerful manner to investigate AP tissue and differentiate infected tissue from normal tissue in a renal infected model system.


Asunto(s)
Análisis de Componente Principal , Pielonefritis , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Pielonefritis/patología , Pielonefritis/diagnóstico , Animales , Riñón/patología , Riñón/química , Enfermedad Aguda , Ratas , Análisis por Conglomerados , Femenino
13.
Int Immunopharmacol ; 138: 112574, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38971104

RESUMEN

BACKGROUND: Ischemic cardiomyopathy (IC) is primarily due to long-term ischemia/hypoxia of the coronary arteries, leading to impaired cardiac contractile or diastolic function. A new form of cell death induced by copper, called "cuproptosis" is related to the development and progression of multiple diseases. The cuproptosis-related gene (CuGs) plays an important role in acute myocardial infarction, while the specific mechanisms of CuGs in ischemic cardiomyopathy remain unclear. METHODS: The expressions of CuGs and their immune characteristics were analyzed with the IC datasets obtained from the Gene Expression Omnibus, namely GSE5406 and GSE57338, identifying core genes associated with IC development. By comparing RF, SVM, GLM and XGB models, the optimal machine learning model was selected. The expression of marker genes was validated based on the GSE57345, GSE48166 and GSE42955 datasets. Construct a CeRNA network based on core genes. Therapeutic chemiacals targeting core genes were acquired using the CTD database, and molecular docking was performed using Autodock vina software. By ligating the left anterior descending (LAD) coronary artery, an IC mouse model is established, and core genes were experimentally validated using Western blot (WB) and immunohistochemistry (IHC) methods. RESULTS: We identified 14 CuGs closely associated with the onset of IC. The SVM model exhibited superior discriminative power (AUC = 0.914), with core genes being DLST, ATP7B, FDX1, SLC31A1 and DLAT. Core genes were validated on the GSE42955, GSE48166 and GSE57345 datasets, showing excellent performance (AUC = 0.943, AUC = 0.800, and AUC = 0.932). The CeRNA network consists of 218 nodes and 264 lines, including 5 core diagnostic genes, 52 miRNAs, and 161 lncRNAs. Chemicals predictions indicated 8 chemicals have therapeutic effects on the core diagnostic genes, with benzo(a)pyrene molecular docking showing the highest affinity (-11.3 kcal/mol). Compared to the normal group, the IC group,which was established by LAD ligation, showed a significant decrease in LVEF as indicated by cardiac ultrasound, and increased fibrosis as shown by MASSON staining, WB results suggest increased expression of DLST and ATP7B, and decreased expression of FDX1, SLC31A1 and DLAT in the myocardial ischemic area (p < 0.05), which was also confirmed by IHC in tissue sections. CONCLUSION: In summary, this study comprehensively revealed that DLST, ATP7B, FDX1, SLC31A1 and DLAT could be identified as potential immunological biomarkers in IC, and validated through an IC mouse model, providing valuable insights for future research into the mechanisms of CuGs and its diagnostic value to IC.


Asunto(s)
Apoptosis , Biología Computacional , Isquemia Miocárdica , Animales , Humanos , Masculino , Ratones , Cardiomiopatías/genética , Cardiomiopatías/inmunología , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Redes Reguladoras de Genes , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Isquemia Miocárdica/genética , Isquemia Miocárdica/inmunología , Cobre
14.
Anal Chim Acta ; 1316: 342826, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969424

RESUMEN

BACKGROUND: In the fields of environmental monitoring and nuclear emergency, in order to obtain the relevant information of uranyl-induced environmental pollution and nuclear accident, it is necessary to establish a rapid quantitative analytical technique for uranyl ions. As a new promising technique, surface-enhanced Raman scattering (SERS) is hopeful to achieve this goal. However, uranyl ions are easily desorbed from SERS substrates under acidic conditions, and the structures of SERS substrates will be destroyed in the strong acidic aqueous solutions. Besides, the quantitative detection ability of SERS for uranyl ions needs to be promoted. Hence, it is necessary to develop new SERS substrates for accurate quantitative detection of trace uranyl in environmental water samples, especially in acidic solutions. RESULTS: In this work, we prepared silver ions/sodium alginate supramolecular hydrogel membrane (Ag+/SA SMH membrane), and the Ag+ ions from the membrane were transformed into Ag/Ag2O complex nanoparticles under laser irradiation. The Raman signal of uranyl was strongly enhanced under the synergistic interaction of electromagnetic enhancement derived from the Ag nanoparticles and charge transfer enhancement between uranyl and Ag2O. Utilizing the peak of SA (550 cm-1) as an internal standard, a quantitative detection with a LOD of 6.7 × 10-9 mol L-1 was achieved due to a good linear relation of uranyl concentrations from 1.0 × 10-8 mol L-1 to 2 × 10-6 mol L-1. Furthermore, foreign metal ions hardly affected the SERS detection of uranyl, and the substrate could determine trace uranyl in natural water samples. Particularly, the acidity had no obvious effect on SERS signals of uranyl ions. Therefore, in addition to the detection of uranyl ions in natural water samples, the proposed strategy could also detect uranyl ions in strong acidic solutions. SIGNIFICANCE AND NOVELTY: A simple one-step method was used to prepare an Ag+/SA SMH membrane for rapid quantitative detection of uranyl ions for the first time. The proposed substrate successfully detected uranyl ions under acidic conditions by immobilizing uranyl ion in hydrogel structure. In comparison with the previous studies, a more accurate quantitative analysis for uranyl ions was achieved by using an internal standard, and the proposed strategy could determine trace uranyl in either natural water samples or strong acidic solutions.

15.
Genome Biol ; 25(1): 171, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951917

RESUMEN

BACKGROUND: The massive structural variations and frequent introgression highly contribute to the genetic diversity of wheat, while the huge and complex genome of polyploid wheat hinders efficient genotyping of abundant varieties towards accurate identification, management, and exploitation of germplasm resources. RESULTS: We develop a novel workflow that identifies 1240 high-quality large copy number variation blocks (CNVb) in wheat at the pan-genome level, demonstrating that CNVb can serve as an ideal DNA fingerprinting marker for discriminating massive varieties, with the accuracy validated by PCR assay. We then construct a digitalized genotyping CNVb map across 1599 global wheat accessions. Key CNVb markers are linked with trait-associated introgressions, such as the 1RS·1BL translocation and 2NvS translocation, and the beneficial alleles, such as the end-use quality allele Glu-D1d (Dx5 + Dy10) and the semi-dwarf r-e-z allele. Furthermore, we demonstrate that these tagged CNVb markers promote a stable and cost-effective strategy for evaluating wheat germplasm resources with ultra-low-coverage sequencing data, competing with SNP array for applications such as evaluating new varieties, efficient management of collections in gene banks, and describing wheat germplasm resources in a digitalized manner. We also develop a user-friendly interactive platform, WheatCNVb ( http://wheat.cau.edu.cn/WheatCNVb/ ), for exploring the CNVb profiles over ever-increasing wheat accessions, and also propose a QR-code-like representation of individual digital CNVb fingerprint. This platform also allows uploading new CNVb profiles for comparison with stored varieties. CONCLUSIONS: The CNVb-based approach provides a low-cost and high-throughput genotyping strategy for enabling digitalized wheat germplasm management and modern breeding with precise and practical decision-making.


Asunto(s)
Variaciones en el Número de Copia de ADN , Triticum , Triticum/genética , Genoma de Planta , Secuenciación de Nucleótidos de Alto Rendimiento , Marcadores Genéticos , Alelos
16.
Talanta ; 277: 126407, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38878512

RESUMEN

Uranium is an essential nuclear material in civilian and military areas; however, its extensive application raises concerns about the potential safety issues in the fields of environmental protection and nuclear industry. In this study, we developed an Ag/Ag2O-COF (covalent-organic framework) composite SERS substrate to detect uranyl ions (UO22+) in environmental aqueous solutions. Herein, the strong SERS effect of uranyl adsorbed in Ag/Ag2O composite and the high adsorption efficiency of COF TpPa-1 were combined to realize the trace detection of uranyl ions. This method displayed a linear range of 10-8 mol L-1 to 10-6 mol L-1 with the detection limit of 8.9 × 10-10 mol L-1 for uranyl ions. Furthermore, common metal cations and oxo-ions hardly affected the SERS detection of uranyl, which is helpful for the trace analysis of uranyl in natural water samples. Although the proposed strategy is deployed for uranyl detection, the reusable and high-efficiency system may be expanded to trace detection of other substance with Raman activity.

17.
Genes (Basel) ; 15(6)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38927696

RESUMEN

Small auxin-upregulated RNAs (SAURs), as the largest family of early auxin-responsive genes, play important roles in plant growth and development processes, such as auxin signaling and transport, hypocotyl development, and tolerance to environmental stresses. However, the functions of few SAUR genes are known in the root development of sweet potatoes. In this study, an IbSAUR36 gene was cloned and functionally analyzed. The IbSAUR36 protein was localized to the nucleus and plasma membrane. The transcriptional level of this gene was significantly higher in the pencil root and leaf.This gene was strongly induced by indole-3-acetic acid (IAA), but it was downregulated under methyl-jasmonate(MeJA) treatment. The promoter of IbSAUR36 contained the core cis-elements for phytohormone responsiveness. Promoter ß-glucuronidase (GUS) analysis in Arabidopsis showed that IbSAUR36 is highly expressed in the young tissues of plants, such as young leaves, roots, and buds. IbSAUR36-overexpressing sweet potato roots were obtained by an efficient Agrobacterium rhizogenes-mediated root transgenic system. We demonstrated that overexpression of IbSAUR36 promoted the accumulation of IAA, upregulated the genes encoding IAA synthesis and its signaling pathways, and downregulated the genes encoding lignin synthesis and JA signaling pathways. Taken together, these results show that IbSAUR36 plays an important role in adventitious root (AR) development by regulating IAA signaling, lignin synthesis, and JA signaling pathways in transgenic sweet potatoes.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Ipomoea batatas , Proteínas de Plantas , Raíces de Plantas , Plantas Modificadas Genéticamente , Ipomoea batatas/genética , Ipomoea batatas/crecimiento & desarrollo , Ipomoea batatas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/genética , Regiones Promotoras Genéticas , Ciclopentanos/farmacología , Ciclopentanos/metabolismo
18.
ACS Appl Mater Interfaces ; 16(25): 32554-32565, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38865698

RESUMEN

The assembly of two-dimensional (2D) nanomaterials into a three-dimensional (3D) aerogel can effectively prevent the problem of restacking. Here, nanofiber-reinforced MXene/reduced graphene oxide (rGO) conductive aerogel is prepared via the hydrothermal reduction of GO using pyrrole and in situ composite with MXene. Combined with low-content 2D conductive nanosheets (MXene and rGO) as "brick", conductive polypyrrole as "mortar", and one-dimensional (1D) nanofiber as "rebar", a strong interfacial cross-linking of MXene and rGO nanosheets is realized through covalent and noncovalent bonds to synergistically improve its mechanical performance. Based on the prepared MXene/rGO aerogel, a high-performance piezoresistive sensor with a sensitivity of up to 20.80 kPa-1 in a wide pressure range of 15.6 kPa is obtained, and it can withstand more than 5000 cyclic compressions. Besides, the sensor shows a stable output and can be applied to monitor various human motion signals. In addition, an all-solid-state supercapacitor electrode is also fabricated, which shows a high area-specific capacitance of up to 274 mF/cm2 at a current density of 1 mA/cm2.

19.
J Speech Lang Hear Res ; 67(7): 2038-2052, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38861399

RESUMEN

PURPOSE: Previous studies have reported the success of distributional learning for adult speakers across segmental and suprasegmental categories immediately after training. On the other hand, second language (L2) perception models posit that the ease with which learners perceive a nonnative speech contrast depends on the perceptual mapping between the contrast and learners' first language (L1) categories. This study examined whether a difference in perceptual mapping patterns for different L2-Mandarin tonal contrasts might result in a difference in distributional learning effectiveness for tonal speakers and whether an interval of sleep enhanced the knowledge through consolidation. METHOD: Following a pretest-training-posttest design, 66 L1-Cantonese participants with fewer than 9 years of Mandarin training were assigned to either the bimodal or unimodal distribution conditions. The participants of each group were asked to discriminate Mandarin level-falling (T1-T4) and level-rising (T1-T2) tone pairs on novel syllables in a within-subject design. All participants were trained in the evening, tested after training, and returned after 12 hr for overnight consolidation assessment. RESULTS: A significant distributional learning effect was observed for Mandarin T1-T4, but only after sleep. No significant distributional learning effect was observed for Mandarin T1-T2, either after training or after sleep. CONCLUSIONS: The findings may imply that distributional learning is contingent on perceptual mapping patterns of the target contrasts and that sleep may play a role in the consolidation of knowledge in an implicit statistical learning paradigm. SUPPLEMENTAL MATERIAL: https://doi.org/10.23641/asha.25970008.


Asunto(s)
Aprendizaje , Multilingüismo , Percepción del Habla , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Lenguaje , Sueño/fisiología , Consolidación de la Memoria/fisiología , Fonética
20.
Int J Biol Macromol ; 273(Pt 1): 133026, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38852722

RESUMEN

A novel glycoside hydrolase (GH) family 16 multi-domain ß-1,3-1,4-glucanase (FsGlc16A) from Fibrobacter sp. UWP2 was identified, heterogeneously expressed, and its enzymatic properties, protein structure and application potential were characterized. Enzymological characterization showed that FsGlc16A performed the optimal catalytic activity at pH 4.5 and 50 °C with a specific activity of 3263 U/mg. FsGlc16A exhibited the substrate specificity towards oat ß-glucan, barley ß-glucan and lichenan, and in addition, it hydrolyzed oat ß-glucan and lichenan into different ß-glucooligosaccharides with polymerization degrees of 3-4, which further illustrated that it belonged to the endo-type ß-1,3-1,4-glucanase. FsGlc16A was classified in subfamily25 of GH16. A 'PXSSSS' repeats domain was identified at the C-terminus of FsGlc16A, which was distinct from the typical GH family 16 ß-1,3-1,4-glucanases. Removing the 'PXSSSS' repeats domain affected the binding of the substrate to FsGlc16A and reduced the enzyme activity. FsGlc16A displayed good potential for the applications, which hydrolyzed oat bran into ß-glucooligosaccharides, and reduced filtration time (18.89 %) and viscosity (3.64 %) in the saccharification process. This study investigated the enzymatic properties and domain function of FsGlc16A, providing new ideas and insights into the study of ß-1,3-1,4-glucanase.


Asunto(s)
Glucanos , Especificidad por Sustrato , Hidrólisis , Glucanos/química , Glucanos/metabolismo , Concentración de Iones de Hidrógeno , Secuencia de Aminoácidos , Temperatura , Dominios Proteicos , beta-Glucanos/metabolismo , beta-Glucanos/química , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Cinética , Endo-1,3(4)-beta-Glucanasa/química , Endo-1,3(4)-beta-Glucanasa/metabolismo , Endo-1,3(4)-beta-Glucanasa/genética , Clonación Molecular , Filogenia , Estabilidad de Enzimas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA