Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 18077, 2024 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103432

RESUMEN

Insulin has been shown to modulate neuronal processes through insulin receptors. The ion channels located on neurons may be important targets for insulin/insulin receptor signaling. Both insulin receptors and acid-sensing ion channels (ASICs) are expressed in dorsal root ganglia (DRG) neurons. However, it is still unclear whether there is an interaction between them. Therefore, the purpose of this investigation was to determine the effects of insulin on the functional activity of ASICs. A 5 min application of insulin rapidly enhanced acid-evoked ASIC currents in rat DRG neurons in a concentration-dependent manner. Insulin shifted the concentration-response plot for ASIC currents upward, with an increase of 46.2 ± 7.6% in the maximal current response. The insulin-induced increase in ASIC currents was eliminated by the insulin receptor antagonist GSK1838705, the tyrosine kinase inhibitor lavendustin A, and the phosphatidylinositol-3 kinase antagonist wortmannin. Moreover, insulin increased the number of acid-triggered action potentials by activating insulin receptors. Finally, local administration of insulin exacerbated the spontaneous nociceptive behaviors induced by intraplantar acid injection and the mechanical hyperalgesia induced by intramuscular acid injections through peripheral insulin receptors. These results suggested that insulin/insulin receptor signaling enhanced the functional activity of ASICs via tyrosine kinase and phosphatidylinositol-3 kinase pathways. Our findings revealed that ASICs were targets in primary sensory neurons for insulin receptor signaling, which may underlie insulin modulation of pain.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Ganglios Espinales , Insulina , Receptor de Insulina , Células Receptoras Sensoriales , Animales , Canales Iónicos Sensibles al Ácido/metabolismo , Insulina/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/citología , Ratas , Receptor de Insulina/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Ratas Sprague-Dawley , Hiperalgesia/metabolismo , Células Cultivadas
2.
J Neurochem ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37987505

RESUMEN

Resolvin D2 (RvD2), an endogenous lipid mediator derived from docosahexaenoic acid, has been demonstrated to have analgesic effects. However, little is known about the mechanism underlying RvD2 in pain relief. Herein, we demonstrate that RvD2 targeted the P2X3 receptor as an analgesic. The electrophysiological activity of P2X3 receptors was suppressed by RvD2 in rat dorsal root ganglia (DRG) neurons. RvD2 pre-application dose-dependently decreased α,ß-methylene-ATP (α,ß-meATP)-induced inward currents. RvD2 remarkably decreased the maximum response to α,ß-meATP, without influencing the affinity of P2X3 receptors. RvD2 also voltage-independently suppressed ATP currents. An antagonist of the G protein receptor 18 (GPR18), O-1918, prevented the RvD2-induced suppression of ATP currents. Additionally, intracellular dialysis of the Gαi/o -protein antagonist pertussis toxin (PTX), the PKA antagonist H89, or the cAMP analog 8-Br-cAMP also blocked the RvD2-induced suppression. Furthermore, α,ß-meATP-triggered depolarization of membrane potential along with the action potential bursts in DRG neurons were inhibited by RvD2. Lastly, RvD2 attenuated spontaneous nociceptive behaviors as well as mechanical allodynia produced by α,ß-meATP in rats via the activation of the peripheral GPR18. These findings indicated that RvD2 inhibited P2X3 receptors in rat primary sensory neurons through GPR18, PTX-sensitive Gαi/o -proteins, and intracellular cAMP/PKA signaling, revealing a novel mechanism that underlies its analgesic effects by targeting P2X3 receptors.

3.
Neuropharmacology ; 241: 109739, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37820935

RESUMEN

Cholecystokinin (CCK) is a peptide that has been implicated in pain modulation. Acid sensitive ion channels (ASICs) also play an important role in pain associated with tissue acidification. However, it is still unclear whether there is an interaction between CCK signaling and ASICs during pain process. Herein, we report that a functional link between them in rat dorsal root ganglion (DRG) neurons. Pretreatment with CCK-8 concentration-dependently increased acid-evoked ASIC currents. CCK-8 increased the maximum response of ASICs to acid, but did not changed their acid sensitivity. Enhancement of ASIC currents by CCK-8 was mediated by the stimulation of CCK2 receptor (CCK2R), rather than CCK1R. The enhancement of ASIC currents by CCK-8 was prevented by application of either G-protein inhibitor GDP-ß-S or protein kinase C (PKC) inhibitor GF109203×, but not by protein kinase A (PKA) inhibitor H-89 or JNK inhibitor SP600125. Moreover, CCK-8 increased the number of action potentials triggered by acid stimuli by activating CCK2R. Finally, CCK-8 dose-dependently exacerbated acid-induced nociceptive behavior in rats through local CCK2R. Together, these results indicated that CCK-8/CCK2R activation enhanced ASIC-mediated electrophysiological activity in DRG neurons and nociception in rats. The enhancement effect depended on G-proteins and intracellular PKC signaling rather than PKA and JNK signaling pathway. These findings provided that CCK-8/CCK2R is an important therapeutic target for ASIC-mediated pain.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Sincalida , Ratas , Animales , Ratas Sprague-Dawley , Sincalida/farmacología , Sincalida/metabolismo , Canales Iónicos Sensibles al Ácido/metabolismo , Células Receptoras Sensoriales , Dolor/metabolismo , Ganglios Espinales/metabolismo
4.
J Biol Chem ; 299(3): 102953, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36731795

RESUMEN

Acid-sensing ion channels (ASICs) play an important role in pain associated with tissue acidification. Peripheral inhibitory group II metabotropic glutamate receptors (mGluRs) have analgesic effects in a variety of pain conditions. Whether there is a link between ASICs and mGluRs in pain processes is still unclear. Herein, we show that the group II mGluR agonist LY354740 inhibited acid-evoked ASIC currents and action potentials in rat dorsal root ganglia neurons. LY354740 reduced the maximum current response to protons, but it did not change the sensitivity of ASICs to protons. LY354740 inhibited ASIC currents by activating group II mGluRs. We found that the inhibitory effect of LY354740 was blocked by intracellular application of the Gi/o protein inhibitor pertussis toxin and the cAMP analogue 8-Br-cAMP and mimicked by the protein kinase A (PKA) inhibitor H-89. LY354740 also inhibited ASIC3 currents in CHO cells coexpressing mGluR2 and ASIC3 but not in cells expressing ASIC3 alone. In addition, intraplantar injection of LY354740 dose-dependently alleviated acid-induced nociceptive behavior in rats through local group II mGluRs. Together, these results suggested that activation of peripheral group II mGluRs inhibited the functional activity of ASICs through a mechanism that depended on Gi/o proteins and the intracellular cAMP/PKA signaling pathway in rat dorsal root ganglia neurons. We propose that peripheral group II mGluRs are an important therapeutic target for ASIC-mediated pain.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Ganglios Espinales , Receptores de Glutamato Metabotrópico , Células Receptoras Sensoriales , Animales , Cricetinae , Ratas , Canales Iónicos Sensibles al Ácido/metabolismo , Cricetulus , Ganglios Espinales/metabolismo , Dolor , Protones , Ratas Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo , Células Receptoras Sensoriales/metabolismo , Potenciales de Acción , Células CHO
5.
Neuropharmacology ; 227: 109443, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36709909

RESUMEN

P2X3 receptors and group II metabotropic glutamate receptors (mGluRs) have been found to be expressed in primary sensory neurons. P2X3 receptors participate in a variety of pain processes, while the activation of mGluRs has an analgesic effect. However, it's still unclear whether there is a link between them in pain. Herein, we reported that the group II mGluR activation inhibited the electrophysiological activity of P2X3 receptors in rat dorsal root ganglia (DRG) neurons. Group II mGluR agonist LY354740 concentration-dependently decreased P2X3 receptor-mediated and α,ß-methylene-ATP (α,ß-meATP)-evoked inward currents in DRG neurons. LY354740 significantly suppressed the maximum response of P2X3 receptor to α,ß-meATP, but did not change their affinity. Inhibition of ATP currents by LY354740 was blocked by the group II mGluR antagonist LY341495, also prevented by the intracellular dialysis of either the Gi/o protein inhibitor pertussis toxin, the cAMP analog 8-Br-cAMP, or the protein kinase A (PKA) inhibitor H-89. Moreover, LY354740 decreased α,ß-meATP-induced membrane potential depolarization and action potential bursts in DRG neurons. Finally, intraplantar injection of LY354740 also relieved α,ß-meATP-induced spontaneous nociceptive behaviors and mechanical allodynia in rats by activating peripheral group Ⅱ mGluRs. These results indicated that peripheral group II mGluR activation inhibited the functional activity of P2X3 receptors via a Gi/o protein and cAMP/PKA signaling pathway in rat DRG neurons, which revealed a novel mechanism underlying analgesic effects of peripheral group II mGluRs. This article is part of the Special Issue on "Purinergic Signaling: 50 years".


Asunto(s)
Receptores de Glutamato Metabotrópico , Ratas , Animales , Receptores de Glutamato Metabotrópico/metabolismo , Ganglios Espinales/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Dolor/metabolismo , Neuronas , Adenosina Trifosfato/metabolismo , Analgésicos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA