Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomed Mater ; 17(2)2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-34996052

RESUMEN

In the past decade, multifunctional peptides have attracted increasing attention in the biomedical field. Peptides possess many impressive advantages, such as high penetration ability, low cost, and etc. However, the short half-life and instability of peptides limit their application. In this study, a poly-peptide drug loading system (called HKMA composite) was designed based on the different functionalities of four peptides. The peptide compositions of HKMA composite from N-terminal to C-terminal were HCBP1, KLA, matrix metalloproteinase-2 (MMP-2)-cleavable peptide and albumin-binding domain. The targeting and lethality of HKMA to NSCLC cell line H460 sphere cells and the half-life of the system were measuredin vivo. The results showed that the HKMA composite had a long half-life and specific killing effect on H460 sphere cellsin vitroandin vivo. Our result proposed smart peptide drug loading system and provided a potential methodology for effective cancer treatment.


Asunto(s)
Antineoplásicos , Sistemas de Liberación de Medicamentos/métodos , Fragmentos de Péptidos , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Ratones Endogámicos BALB C , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Dominios Proteicos/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacocinética , Proteínas Recombinantes de Fusión/farmacología
2.
Acta Biomater ; 127: 266-275, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33813091

RESUMEN

The development of an effective delivery system for peptides targeting the tumor microenvironment has always been a hot topic of research in the field of cancer diagnosis and therapy. In this study, superparamagnetic iron oxide nanoparticles (SPIO NPs) were encapsulated with H460 lung cancer cell membranes (SPIO NP@M), and two peptides, namely PD-L1 inhibitory peptide (TPP1) and MMP2 substrate peptide (PLGLLG), were conjugated to the H460 membrane (SPIO NP@M-P). Homologous targeting, cytotoxicity, and pharmacokinetics of SPIO NP@M-P were evaluated. The TPP1 peptide was delivered and released to the tumor microenvironment through the homotypic effect of tumor cell membrane and specific digestion by the tumor-specific enzyme MMP2. The newly developed delivery system (SPIO NP@M-P) for the PD-L1 inhibitory peptide could effectively extend the half-life of the peptides (60 times longer than that for peptides alone) and could maintain the ability to reactivate T cells and inhibit the tumor growth both in vitro and in vivo. Furthermore, SPIO NPs in the system could be used as a tumor imaging agent and thus show the effect of peptide treatment. The SPIO NP@M might serve as a promising theranostic platform for therapeutic application of peptides in cancer therapy. STATEMENT OF SIGNIFICANCE: A multifunctional delivery system (SPIO NP@M) was constructed for effectively delivering therapeutic peptides into the tumor microenvironment for cancer diagnosis and therapy. In this paper, the TPP-1 peptide inhibiting the binding of PD-L1 and PD-1 was delivered and released into the tumor microenvironment by the homotypic targeting of H460 cell membrane and specific digestion by the MMP2 enzyme. SPIO NPs in this system were aggregated effectively at the tumor sites and were used for magnetic resonance imaging of tumors. The SPIO NP@M-P delivery system could effectively extend the half-life of the TPP-1 peptide (60 times longer than that of the free peptide) and could maintain the ability to re-activate T cells and inhibit tumor growth in vitro and in vivo. In conclusion, the SPIO NP@M system coated with lung cancer cell membrane and loaded with the PD-L1-blocking TPP-1 peptide could be a promising integrated platform for tumor diagnosis and treatment.


Asunto(s)
Nanopartículas , Neoplasias , Péptidos , Línea Celular Tumoral , Membrana Celular , Humanos , Inmunoterapia , Imagen por Resonancia Magnética , Neoplasias/tratamiento farmacológico , Péptidos/farmacología , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA