Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Integr Plant Biol ; 66(4): 787-809, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38477645

RESUMEN

The recretohalophyte Limonium bicolor thrives in high-salinity environments because salt glands on the above-ground parts of the plant help to expel excess salt. Here, we characterize a nucleus-localized C3HC4 (RING-HC)-type zinc finger protein of L. bicolor named  RING  ZINC  FINGER PROTEIN  1 (LbRZF1). LbRZF1 was expressed in salt glands and in response to NaCl treatment. LbRZF1 showed no E3 ubiquitin ligase activity. The phenotypes of overexpression and knockout lines for LbRZF1 indicated that LbRZF1 positively regulated salt gland development and salt tolerance in L. bicolor. lbrzf1 mutants had fewer salt glands and secreted less salt than did the wild-type, whereas LbRZF1-overexpressing lines had opposite phenotypes, in keeping with the overall salt tolerance of these plants. A yeast two-hybrid screen revealed that LbRZF1 interacted with LbCATALASE2 (LbCAT2) and the transcription factor LbMYB113, leading to their stabilization. Silencing of LbCAT2 or LbMYB113 decreased salt gland density and salt tolerance. The heterologous expression of LbRZF1 in Arabidopsis thaliana conferred salt tolerance to this non-halophyte. We also identified the transcription factor LbMYB48 as an upstream regulator of LbRZF1 transcription. The study of LbRZF1 in the regulation network of salt gland development also provides a good foundation for transforming crops and improving their salt resistance.


Asunto(s)
Arabidopsis , Plumbaginaceae , Animales , Tolerancia a la Sal/genética , Plumbaginaceae/genética , Plumbaginaceae/metabolismo , Glándula de Sal/metabolismo , Zinc/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Dedos de Zinc , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Front Plant Sci ; 13: 1039984, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388592

RESUMEN

Limonium bicolor is a dicotyledonous recretohalophyte with several multicellular salt glands on the leaves. The plant can directly secrete excess salt onto the leaf surface through the salt glands to maintain ion homeostasis under salt stress. Therefore, it is of great significance to study the functions of genes related to salt gland development and salt tolerance. In this study, an R1-type MYB transcription factor gene was screened from L. bicolor, named LbMYB48, and its expression was strongly induced by salt stress. Subcellular localization analysis showed that LbMYB48 was localized in the nucleus. LbMYB48 protein has transcriptional activation activity shown by transcriptional activation experiments. The density of salt glands in the leaves and the salt secretion capacity of LbMYB48-silenced lines were decremented, as demonstrated by the leaf disc method to detect sodium ion secretion. Furthermore, salt stress index experiments revealed that the ability of LbMYB48-silenced lines to resist salt stress was significantly reduced. LbMYB48 regulates salt gland development and salt tolerance in L. bicolor mainly by regulating the expression of epidermal cell development related genes such as LbCPC-like and LbDIS3 and salt stress-related genes (LbSOSs, LbRLKs, and LbGSTs) as demonstrated by RNA-seq analysis of LbMYB48-silenced lines. The heterologous over-expression of LbMYB48 in Arabidopsis thaliana improves salt tolerance of plants by stabilizing ion and osmotic balance and is likely to be involved in the abscisic acid signaling pathway. Therefore, LbMYB48, a transcriptional activator regulates the salt gland development of L. bicolor and salt tolerance of L. bicolor and A. thaliana.

3.
Front Plant Sci ; 13: 877011, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35498666

RESUMEN

RING zinc finger proteins have a conserved RING domain, mainly function as E3 ubiquitin ligases, and play important roles in plant growth, development, and the responses to abiotic stresses such as drought, salt, temperature, reactive oxygen species, and harmful metals. RING zinc finger proteins act in abiotic stress responses mainly by modifying and degrading stress-related proteins. Here, we review the latest progress in research on RING zinc finger proteins, including their structural characteristics, classification, subcellular localization, and physiological functions, with an emphasis on abiotic stress tolerance. Under abiotic stress, RING zinc finger proteins on the plasma membrane may function as sensors or abscisic acid (ABA) receptors in abiotic stress signaling. Some RING zinc finger proteins accumulate in the nucleus may act like transcription factors to regulate the expression of downstream abiotic stress marker genes through direct or indirect ways. Most RING zinc finger proteins usually accumulate in the cytoplasm or nucleus and act as E3 ubiquitin ligases in the abiotic stress response through ABA, mitogen-activated protein kinase (MAPK), and ethylene signaling pathways. We also highlight areas where further research on RING zinc finger proteins in plants is needed.

4.
Plants (Basel) ; 11(7)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35406886

RESUMEN

Soil salinization is a major environmental stressor that reduces the growth and yield of crops. Maintaining the balance of ions under salinity is vital for plant salt tolerance; however, little is known about the correlation between the salt tolerance of crops and the ion contents of their roots and shoots. Here, we investigated the poorly understood salt-tolerance mechanisms, particularly regarding ion contents (particularly Na+), in Brassica napus subsp. napus L., an agriculturally important species. Twenty B. napus inbred lines were randomly chosen from five salt-tolerance categories and treated with increasing concentrations of NaCl (0-200 mmol) for this work. We found that the root Na+ content is the most correlated limiting factor for the salt tolerance of B. napus; the higher the salt tolerance, the lower the root Na+ content. Correspondingly, the Ca2+/Na+ and K+/Na+ ratios of the roots were highly correlated with B. napus salt tolerance, indicating that the selective absorption ability of these ions by the roots and their translocation to the shoots play a pivotal role in this trait. These data provide a foundation for the further study of the molecular mechanisms underlying salt tolerance and for breeding salt-tolerant B. napus cultivars.

5.
Front Plant Sci ; 12: 754512, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630497

RESUMEN

Plant epidermal cells, such as trichomes, root hairs, salt glands, and stomata, play pivotal roles in the growth, development, and environmental adaptation of terrestrial plants. Cell fate determination, differentiation, and the formation of epidermal structures represent basic developmental processes in multicellular organisms. Increasing evidence indicates that C2H2 zinc finger proteins play important roles in regulating the development of epidermal structures in plants and plant adaptation to unfavorable environments. Here, we systematically summarize the molecular mechanism underlying the roles of C2H2 zinc finger proteins in controlling epidermal cell formation in plants, with an emphasis on trichomes, root hairs, and salt glands and their roles in plant adaptation to environmental stress. In addition, we discuss the possible roles of homologous C2H2 zinc finger proteins in trichome development in non-halophytes and salt gland development in halophytes based on bioinformatic analysis. This review provides a foundation for further study of epidermal cell development and abiotic stress responses in plants.

6.
Int J Mol Sci ; 22(15)2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34361093

RESUMEN

Zinc-finger proteins, a superfamily of proteins with a typical structural domain that coordinates a zinc ion and binds nucleic acids, participate in the regulation of growth, development, and stress adaptation in plants. Most zinc fingers are C2H2-type or CCCC-type, named after the configuration of cysteine (C) and histidine (H); the less-common CCCH zinc-finger proteins are important in the regulation of plant stress responses. In this review, we introduce the domain structures, classification, and subcellular localization of CCCH zinc-finger proteins in plants and discuss their functions in transcriptional and post-transcriptional regulation via interactions with DNA, RNA, and other proteins. We describe the functions of CCCH zinc-finger proteins in plant development and tolerance to abiotic stresses such as salt, drought, flooding, cold temperatures and oxidative stress. Finally, we summarize the signal transduction pathways and regulatory networks of CCCH zinc-finger proteins in their responses to abiotic stress. CCCH zinc-finger proteins regulate the adaptation of plants to abiotic stress in various ways, but the specific molecular mechanisms need to be further explored, along with other mechanisms such as cytoplasm-to-nucleus shuttling and post-transcriptional regulation. Unraveling the molecular mechanisms by which CCCH zinc-finger proteins improve stress tolerance will facilitate the breeding and genetic engineering of crops with improved traits.


Asunto(s)
Adaptación Fisiológica , Regulación de la Expresión Génica de las Plantas , Desarrollo de la Planta , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Estrés Fisiológico , Dedos de Zinc , Sequías , Proteínas de Plantas/genética , Plantas/genética , Plantas/inmunología
7.
Front Plant Sci ; 11: 298, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32256516

RESUMEN

[This corrects the article DOI: 10.3389/fpls.2020.00115.].

8.
Front Plant Sci ; 11: 115, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32153617

RESUMEN

Abiotic stresses such as drought and salinity are major environmental factors that limit crop yields. Unraveling the molecular mechanisms underlying abiotic stress resistance is crucial for improving crop performance and increasing productivity under adverse environmental conditions. Zinc finger proteins, comprising one of the largest transcription factor families, are known for their finger-like structure and their ability to bind Zn2+. Zinc finger proteins are categorized into nine subfamilies based on their conserved Cys and His motifs, including the Cys2/His2-type (C2H2), C3H, C3HC4, C2HC5, C4HC3, C2HC, C4, C6, and C8 subfamilies. Over the past two decades, much progress has been made in understanding the roles of C2H2 zinc finger proteins in plant growth, development, and stress signal transduction. In this review, we focus on recent progress in elucidating the structures, functions, and classifications of plant C2H2 zinc finger proteins and their roles in abiotic stress responses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA