Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Talanta ; 265: 124931, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37451121

RESUMEN

Rapid, efficient, specific and sensitive diagnostic techniques are critical for selecting appropriate treatments for drug-resistant bacterial infections. To address this challenge, we have developed a novel diagnostic method, called the Dual-Cas Tandem Diagnostic Platform (DTDP), which combines the use of Cas9 nickase (Cas9n) and Cas12a. DTDP works by utilizing the Cas9n-sgRNA complex to create a nick in the target strand's double-stranded DNA (dsDNA). This prompts DNA polymerase to displace the single-stranded DNA (ssDNA) and leads to cycles of DNA replication through nicking, displacement, and extension. The ssDNA is then detected by the Cas12a-crRNA complex (which is PAM-free), activating trans-cleavage and generating a fluorescent signal from the fluorescent reporter. DTDP exhibits a high sensitivity (1 CFU/mL or 100 ag/µL), high specificity (specifically to MRSA in nine pathogenic species), and excellent accuracy (100%). The dual RNA recognition process in our method improves diagnostic specificity by decreasing the limitations of Cas12a in detecting dsDNA protospacer adjacent motifs (PAMs) and leverages multiple advantages of multi-Cas enzymes in diagnostics. This novel approach to pathogenic microorganism detection has also great potential for clinical diagnosis.

2.
Anal Chim Acta ; 1271: 341470, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37328250

RESUMEN

Pathogen identification requires nucleic acid diagnosis with simple equipment and fast manipulation. Our work established an all-in-one strategy assay with excellent sensitivity and high specificity, Transcription-Amplified Cas14a1-Activated Signal Biosensor (TACAS), for the fluorescence-based bacterial RNA detection. The DNA as a promoter probe and a reporter probe directly ligated via SplintR ligase once specifically hybridized to the single-stranded target RNA sequence, with the ligation product transcribed into Cas14a1 RNA activators by T7 RNA polymerase. This forming sustained isothermal one-pot ligation-transcription cascade produced RNA activators constantly and enabled Cas14a1/sgRNA complex to generate fluorescence signal, thus leading to a sensitive detection limit of 1.52 CFU mL-1E. coli within 2 h of incubation time. TACAS was applied in contrived E. coli infected fish and milk samples, and a significant signal differentiation between positive (infected) and negative (uninfected) samples was reached. Meanwhile, E. coli colonization and transmit time in vivo were explored and the TACAS assay promoted the understanding of the infection mechanisms of the E. coli infection, demonstrating an excellent detection capability.


Asunto(s)
Técnicas Biosensibles , Escherichia coli , Animales , Escherichia coli/genética , ADN/genética , ARN Bacteriano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA