Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 469, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39298023

RESUMEN

Prior research has indicated that the gut-lung-axis can be influenced by the intestinal microbiota, thereby impacting lung immunity. Rifaximin is a broad-spectrum antibacterial drug that can maintain the homeostasis of intestinal microflora. In this study, we established an influenza A virus (IAV)-infected mice model with or without rifaximin supplementation to investigate whether rifaximin could ameliorate lung injury induced by IAV and explore the molecular mechanism involved. Our results showed that IAV caused significant weight loss and disrupted the structure of the lung and intestine. The analysis results of 16S rRNA and metabolomics indicated a notable reduction in the levels of probiotics Lachnoclostridium, Ruminococcaceae_UCG-013, and tryptophan metabolites in the fecal samples of mice infected with IAV. In contrast, supplementation with 50 mg/kg rifaximin reversed these changes, including promoting the repair of the lung barrier and increasing the abundance of Muribaculum, Papillibacter and tryptophan-related metabolites content in the feces. Additionally, rifaximin treatment increased ILC3 cell numbers, IL-22 level, and the expression of RORγ and STAT-3 protein in the lung. Furthermore, our findings demonstrated that the administration of rifaximin can mitigate damage to the intestinal barrier while enhancing the expression of AHR, IDO-1, and tight junction proteins in the small intestine. Overall, our results provided that rifaximin alleviated the imbalance in gut microbiota homeostasis induced by IAV infection and promoted the production of tryptophan-related metabolites. Tryptophan functions as a signal to facilitate the activation and movement of ILC3 cells from the intestine to the lung through the AHR/STAT3/IL-22 pathway, thereby aiding in the restoration of the barrier. KEY POINTS: • Rifaximin ameliorated IAV infection-caused lung barrier injury and induced ILC3 cell activation. • Rifaximin alleviated IAV-induced gut dysbiosis and recovered tryptophan metabolism. • Tryptophan mediates rifaximin-induced ILC3 cell activation via the AHR/STAT3/IL-22 pathway.


Asunto(s)
Microbioma Gastrointestinal , Virus de la Influenza A , Pulmón , Infecciones por Orthomyxoviridae , Rifaximina , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Rifaximina/uso terapéutico , Ratones , Pulmón/microbiología , Pulmón/efectos de los fármacos , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Virus de la Influenza A/efectos de los fármacos , Modelos Animales de Enfermedad , ARN Ribosómico 16S/genética , Interleucinas/metabolismo , Interleucinas/genética , Interleucina-22 , Ratones Endogámicos C57BL , Antibacterianos/farmacología , Factor de Transcripción STAT3/metabolismo , Heces/microbiología , Triptófano/metabolismo , Lesión Pulmonar/tratamiento farmacológico , Probióticos/administración & dosificación , Probióticos/farmacología
2.
Poult Sci ; 103(10): 104125, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39137496

RESUMEN

After viral infection, the virus relies on the host cell's complex metabolic and biosynthetic machinery for replication. However, the impact of avian influenza virus (AIV) on metabolites and gene expression in poultry cells remains unclear. To investigate this, we infected chicken embryo fibroblasts DF1 cells with H9N2 AIV at an MOI of 3. Our aim was to explore how H9N2 AIV alters DF1 cells metabolic pathways to facilitate its replication. We employed metabolomics and transcriptomics techniques to analyze changes in metabolite content and gene expression. Metabolomics analysis revealed a significant increase in glutathione-related metabolites, including reduced glutathione (GSH), oxidized glutathione (GSSG) and total glutathione (T-GSH) upon H9N2 AIV infection in DF1 cells. Elisa results confirmed elevated levels of GSH, GSSG, and T-GSH consistent with metabolomics findings, noting a pronounced increase in GSSG compared to GSH. Transcriptomics showed significant alterations in genes involved in glutathione synthesis and metabolism post-H9N2 infection. However, adding the glutathione synthesis inhibitor BSO exogenously significantly promoted H9N2 replication in DF1 cells. This was accompanied by increased mRNA levels of pro-inflammatory cytokines (IL-1ß, IFN-γ) and decreased mRNA levels of anti-inflammatory cytokines (TGF-ß, IL-13). BSO also reduced catalase (CAT) gene expression and inhibited its activity, leading to higher reactive oxygen species (ROS) and malondialdehyde (MDA) level in DF1 cells. qPCR results indicated decreased mRNA levels of Nrf2, NQO1, and HO-1 with BSO, ultimately increasing oxidative stress in DF1 cells. Therefore, the above results indicated that H9N2 AIV infection in DF1 cells activated the glutathione metabolic pathway to enhance the cell's self-defense mechanism against H9N2 replication. However, when GSH synthesis is inhibited within the cells, it leads to an elevated oxidative stress level, thereby promoting H9N2 replication within the cells through Nrf2/HO-1 pathway. This study provides a theoretical basis for future rational utilization of the glutathione metabolic pathway to prevent viral replication.

3.
Front Immunol ; 15: 1435180, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114658

RESUMEN

Introduction: Introduction: The influenza virus primarily targets the respiratory tract, yet both the respiratory and intestinal systems suffer damage during infection. The connection between lung and intestinal damage remains unclear. Methods: Our experiment employs 16S rRNA technology and Liquid Chromatography-Mass Spectrometry (LC-MS) to detect the impact of influenza virus infection on the fecal content and metabolites in mice. Additionally, it investigates the effect of influenza virus infection on intestinal damage and its underlying mechanisms through HE staining, Western blot, Q-PCR, and flow cytometry. Results: Our study found that influenza virus infection caused significant damage to both the lungs and intestines, with the virus detected exclusively in the lungs. Antibiotic treatment worsened the severity of lung and intestinal damage. Moreover, mRNA levels of Toll-like receptor 7 (TLR7) and Interferon-b (IFN-b) significantly increased in the lungs post-infection. Analysis of intestinal microbiota revealed notable shifts in composition after influenza infection, including increased Enterobacteriaceae and decreased Lactobacillaceae. Conversely, antibiotic treatment reduced microbial diversity, notably affecting Firmicutes, Proteobacteria, and Bacteroidetes. Metabolomics showed altered amino acid metabolism pathways due to influenza infection and antibiotics. Abnormal expression of indoleamine 2,3-dioxygenase 1 (IDO1) in the colon disrupted the balance between helper T17 cells (Th17) and regulatory T cells (Treg cells) in the intestine. Mice infected with the influenza virus and supplemented with tryptophan and Lactobacillus showed reduced lung and intestinal damage, decreased Enterobacteriaceae levels in the intestine, and decreased IDO1 activity. Discussion: Overall, influenza infection caused damage to lung and intestinal tissues, disrupted intestinal microbiota and metabolites, and affected Th17/Treg balance. Antibiotic treatment exacerbated these effects. Supplementation with tryptophan and Lactobacillus improved lung and intestinal health, highlighting a new understanding of the lung-intestine connection in influenza-induced intestinal disease.


Asunto(s)
Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Pulmón , Infecciones por Orthomyxoviridae , Animales , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/metabolismo , Ratones , Pulmón/inmunología , Pulmón/microbiología , Pulmón/metabolismo , Pulmón/virología , Receptor Toll-Like 7/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Ratones Endogámicos C57BL , Intestinos/inmunología , Intestinos/microbiología , Intestinos/virología , Femenino , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Transducción de Señal , ARN Ribosómico 16S/genética , Glicoproteínas de Membrana
4.
J Mol Endocrinol ; 61(1): 13-23, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29632025

RESUMEN

Neuromedin B (NMB), a mammalian bombesin-related peptide, has numerous physiological functions, including regulating hormone secretions, cell growth, and reproduction, by binding to its receptor (NMBR). In this study, we investigated the effects of NMB on testosterone secretion, steroidogenesis, cell proliferation, and apoptosis in cultured primary porcine Leydig cells. NMBR was mainly expressed in the Leydig cells of porcine testes, and a specific dose of NMB significantly promoted the secretion of testosterone in the primary Leydig cells; moreover, NMB increased the expression of mRNA and/or proteins of NMBR and steroidogenic mediators (steroidogenic acute regulatory (STAR), CYP11A1, and HSD3B1) in the Leydig cells. In addition, specific doses of NMB promoted the proliferation of Leydig cells and increased the expression of proliferating cell nuclear antigen and Cyclin B1 proteins, while suppressing Leydig cell apoptosis and decreasing BAX and Caspase-3 protein expression. These results suggest that the NMB/NMBR system might play an important role in regulating boar reproductive function by modulating steroidogenesis and/or cell growth in porcine Leydig cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Intersticiales del Testículo/citología , Células Intersticiales del Testículo/metabolismo , Neuroquinina B/análogos & derivados , Animales , Caspasa 3/metabolismo , Células Cultivadas , Ciclina B1/metabolismo , Masculino , Neuroquinina B/farmacología , Antígeno Nuclear de Célula en Proliferación/metabolismo , ARN Mensajero/metabolismo , Receptores de Bombesina/metabolismo , Porcinos , Testosterona/metabolismo , Proteína X Asociada a bcl-2/metabolismo
5.
Peptides ; 99: 142-152, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28966141

RESUMEN

Gastrin-releasing peptide (GRP) is a mammalian bombesin (BN)-like peptide which plays a role in a number of important physiological functions via its receptor (gastrin-releasing peptide receptor, GRPR) in most animals. However, little is known about the gene encoding GRPR and its functions (especially reproduction) in pigs. In this study, we first cloned and analyzed the pig GRPR cDNA. Then we systematically investigated the expression levels of GRPR mRNA by relative real-time PCR (RT-PCR), and analyzed the distribution of the GRPR protein in pig tissues via immunohistochemistry (IHC). Finally, we studied the effect of GRP on testosterone secretion and GRPR (mRNA and protein) expression in Leydig cells. Results showed that the pig GRPR cDNA cloned at 1487bp, including one open reading frame (ORF) of 1155bp and encodes 384 amino acids. Significantly, compared with other species, the cDNA sequence and amino acid sequence of the pig GRPR were highly homologous and conservative. The RT-PCR results showed that: in the central nervous system (CNS) and the pituitary, GRPR mRNA was found in the cerebellum, hypophysis, spinal cord and hypothalamus; in the peripheral tissues, GRPR mRNA was mainly expressed in the pancreas, esophagus, ovary, testis, spleen, thymus, jejunum lymph node, muscle and fat. Moreover, the IHC results showed that GRPR immunoreactivity was widely distributed in the pig tissues and organs, such as the pancreas, esophagus, testis, ovary, spleen, pituitary gland and adrenal gland. In addition, we found that GRP promotes testosterone secretion, and increases GRPR mRNA and protein expression in cultured Leydig cells in vitro. These molecular and morphological data not only describe the anatomical locations of GRPR in pigs, but also provide the theoretical foundation for further research into its possible physiological functions in pigs. These results suggest that the GRP/GRPR system may play an important role in regulating the reproductive system of the boar.


Asunto(s)
Péptido Liberador de Gastrina/metabolismo , Regulación de la Expresión Génica/fisiología , Células Intersticiales del Testículo/metabolismo , Receptores de Bombesina/biosíntesis , Testosterona/biosíntesis , Animales , Células Intersticiales del Testículo/citología , Masculino , Porcinos
6.
Neuropeptides ; 64: 47-60, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28434792

RESUMEN

Neuromedin U (NMU) is a highly conserved neuropeptide that performs a variety of physiological functions in animals via neuromedin U receptor-1 (NMUR1) and neuromedin U receptor-2 (NMUR2). In this study, we cloned the pig NMU, NMUR1 and NMUR2 genes. Bioinformatics analysis demonstrated that the pig NMU cDNA encoded the amino acids Phe-Leu-Phe-Arg-Pro-Arg-Asn-NH2 at the C-terminus and that the NMU receptors, which are G-protein-coupled receptors (GPCRs), contained the seven transmembrane domains typical of GPCRs. Systemic NMU, NMUR1 and NMUR2 mRNA expression was investigated in various pig tissues using real-time RT-PCR. NMU mRNA was expressed both in the central nervous system (CNS) and in peripheral tissues. NMUR1 mRNA was widely expressed in peripheral tissues, whereas NMUR2 mRNA was mainly expressed in the CNS. Immunohistochemistry (IHC) was used to determine the expression patterns of NMU and NMUR1, which were predominantly located in the gastrointestinal tract, genitourinary organs, and immune organs. This study presents molecular and morphological data to aid in additional NMU research in pigs.


Asunto(s)
Expresión Génica/fisiología , Neuropéptidos/metabolismo , Receptores de Neurotransmisores/metabolismo , Animales , Sistema Nervioso Central/metabolismo , Dipéptidos/metabolismo , Femenino , Inmunohistoquímica/métodos , Masculino , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA