Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Genet Genomics ; 297(1): 113-123, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34854981

RESUMEN

In mammals, Yin Yang 1 (YY1), a pervasively expressed transcription factor related to many biological processes as an activator or inhibitor of the transcription of various genes, plays a critical role in the development of male gonads and spermatogenesis. Although the role of YY1 on the development of male gonads and spermatogenesis in mammals has been reported, its function on chicken testis are yet to be clarified. In this study, we used immunofluorescence analysis to investigate the location of YY1 in chicken testis. In embryo testis, YY1 was detected in spermatogonia and Sertoli cells, while in adult testis, YY1 was shown to be expressed in spermatogenic cells and Sertoli cells, but not in spermatozoa. Furthermore, we investigated the regulatory functions of YY1 in chicken testicular Sertoli cells by combining overexpression with RNA-sequencing. Overexpression of YY1 in Sertoli cells revealed a total of 2955 differentially expressed genes involved in various biological processes, such as male gonad development and seminiferous tubule development. Overexpression of YY1 also caused significant differences in the expression of the androgen receptor gene and the inhibin ßA gene, two major genes involved in the regulation of spermatogonia in Sertoli cells. These observations indicate that YY1 may regulate the development and function of the gonads by affecting the secretion of cytokines and hormones in Sertoli cells to mediate the production and differentiation of spermatogonia.


Asunto(s)
Pollos , Testículo/metabolismo , Factor de Transcripción YY1/genética , Animales , Diferenciación Celular/genética , Embrión de Pollo , Pollos/genética , Pollos/crecimiento & desarrollo , Pollos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Masculino , Espermatogénesis/genética , Espermatogonias/fisiología , Espermatozoides/fisiología , Testículo/embriología , Testículo/crecimiento & desarrollo , Distribución Tisular , Factor de Transcripción YY1/metabolismo
2.
Genes (Basel) ; 12(9)2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34573307

RESUMEN

Previous studies have shown that gga-miR-2954 was highly expressed in the gonads and other tissues of male chickens, including muscle tissue. Yin Yang1 (YY1), which has functions in mammalian skeletal muscle development, was predicted to be a target gene of gga-miR-2954. The purpose of this study was to investigate whether gga-miR-2954 plays a role in skeletal muscle development by targeting YY1, and evaluate its function in the sexual dimorphism development of chicken muscle. Here, all the temporal and spatial expression profiles in chicken embryonic muscles showed that gga-miR-2954 is highly expressed in males and mainly localized in cytoplasm. Gga-miR-2954 exhibited upregulated expression of in vitro myoblast differentiation stages. Next, through the overexpression and loss-of-function experiments performed in chicken primary myoblasts, we found that gga-miR-2954 inhibited myoblast proliferation but promoted differentiation. During myogenesis, gga-miR-2954 could suppress the expression of YY1, which promoted myoblast proliferation and inhibited the process of myoblast cell differentiation into multinucleated myotubes. Overall, these findings reveal a novel role of gga-miR-2954 in skeletal muscle development through its function of the myoblast proliferation and differentiation by suppressing the expression of YY1. Moreover, gga-miR-2954 may contribute to the sex difference in chicken muscle development.


Asunto(s)
Diferenciación Celular
3.
Reprod Fertil Dev ; 31(5): 867-874, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30641031

RESUMEN

FOXD1, one of the transcription factors of the FOX family, has been shown to be important for mammalian reproduction but little is known about its function in avian species. In the present study, we identified the expression pattern and location of FOXD1 in chicken tissues and testis by performing quantitative polymerase chain reaction, immunohistochemistry and immunofluorescence, and further investigated the regulatory relationship of FOXD1 with genes involved in testis development by RNA interference. Our results showed that FOXD1 is confirmed to be significantly male-biased expressed in the brain, kidney and testis of adults as well as in embryonic gonads, and it is localised in the testicular Sertoli cell in chicken, consistent with its localisation in mammals. After knock-down of FOXD1 in chicken Sertoli cells, the expression of anti-Müllerian hormone (AMH), sex-determining region Y-box 9 (SOX9) and PKA regulatory subunits type I α (RIα) was significantly downregulated, expression of androgen receptor (AR) was notably increased whereas double-sex and MAB-3-related transcription factor 1 (DMRT1) showed no obvious change in expression. These results suggest that FOXD1 is an essential marker for Sertoli cells upstream of SOX9 expression and a potential regulator of embryonic testis differentiation and development and of normal testis function in the chicken.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células de Sertoli/metabolismo , Diferenciación Sexual/fisiología , Testículo/metabolismo , Animales , Pollos , Factores de Transcripción Forkhead/genética , Técnicas de Silenciamiento del Gen , Masculino , Interferencia de ARN , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Testículo/embriología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA