Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
1.
Cancer Lett ; 604: 217245, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276915

RESUMEN

A blood test that enables surveillance for early-stage pancreatic ductal adenocarcinoma (PDAC) is an urgent need. Independent laboratories have reported PDAC biomarkers that could improve biomarker performance over CA19-9 alone, but the performance of the previously reported biomarkers in combination is not known. Therefore, we conducted a coordinated case/control study across multiple laboratories using common sets of blinded training and validation samples (132 and 295 plasma samples, respectively) from PDAC patients and non-PDAC control subjects representing conditions under which surveillance occurs. We analyzed the training set to identify candidate biomarker combination panels using biomarkers across laboratories, and we applied the fixed panels to the validation set. The panels identified in the training set, CA19-9 with CA199.STRA, LRG1, TIMP-1, TGM2, THSP2, ANG, and MUC16.STRA, achieved consistent performance in the validation set. The panel of CA19-9 with the glycan biomarker CA199.STRA improved sensitivity from 0.44 with 0.98 specificity for CA19-9 alone to 0.71 with 0.98 specificity (p < 0.001, 1000-fold bootstrap). Similarly, CA19-9 combined with the protein biomarker LRG1 and CA199.STRA improved specificity from 0.16 with 0.94 sensitivity for CA19-9 to 0.65 with 0.89 sensitivity (p < 0.001, 1000-fold bootstrap). We further validated significantly improved performance using biomarker panels that did not include CA19-9. This study establishes the effectiveness of a coordinated study of previously discovered biomarkers and identified panels of those biomarkers that significantly increased the sensitivity and specificity of early-stage PDAC detection in a rigorous validation trial.

2.
Int J Cardiol ; 416: 132505, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39222886

RESUMEN

BACKGROUND: Myocardial ischemia-reperfusion(I/R)injury constitute the fundamental pathophysiology of acute myocardial infarction (AMI). Ischemic heart releases macrophage migration inhibitory factor (MIF), which activates MIF- AMPK signaling pathway. Depression is a significant risk factor for AMI. In a state of depression, peripheral expression of cannabinoid receptor 2 (CNR2) genes was downregulated. AIMS: We investigated the mechanism by which depression exacerbates myocardial I/R injury through the CNR2 and MIF-AMPK signaling pathways. METHODS: We established mouse models of depression and myocardial I/R. Left ventricular function was assessed using cardiac ultrasound and TTC staining. The protein levels of myocardial CNR2, MIF, AMPK, and ACC were determined by Western blot, while the expression level of CNR2 was measured using RT-qPCR. Additionally, MIF content in peripheral blood was quantified using ELISA. RESULTS: After I/R, the expression level of CNR2 was found to be lower in the depression group, leading to a deterioration in left heart function. Depressed mice exhibited lower secretion of MIF, accompanied by a decrease in the activation of the MIF-AMPK signaling pathway. However, injection of CNR2 agonist JWH133 prior to ischemia increased the activation of the MIF-AMPK signaling pathway, while CNR2 inhibitor AM630 decreased the activation. LIMITATIONS: Further research is needed to investigate the specific neuroendocrine mechanism affecting myocardial CNR2 expression in depression. And these experimental conclusions require further verification at the cellular level. CONCLUSIONS: The activation of CNR2 in myocardium following I/R is impeded by depression, thereby exacerbating myocardial I/R injury through attenuation of the MIF-AMPK signaling pathway activation.


Asunto(s)
Oxidorreductasas Intramoleculares , Factores Inhibidores de la Migración de Macrófagos , Ratones Endogámicos C57BL , Daño por Reperfusión Miocárdica , Receptor Cannabinoide CB2 , Transducción de Señal , Animales , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/metabolismo , Receptor Cannabinoide CB2/biosíntesis , Ratones , Transducción de Señal/fisiología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/genética , Masculino , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Depresión/metabolismo , Depresión/etiología , Depresión/genética , Modelos Animales de Enfermedad
3.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119822, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39159685

RESUMEN

Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by chronic ovulation dysfunction and overproduction of androgens. Women with PCOS are commonly accompanied by insulin resistance (IR), which can impair insulin sensitivity and elevate blood glucose levels. IR promotes ovarian cysts, ovulatory dysfunction, and menstrual irregularities in women patients, leading to the pathogenesis of PCOS. Secreted frizzled-related protein 4 (SFRP4), a secreted glycoprotein, exhibits significantly elevated expression levels in obese individuals with IR and PCOS. Whereas, whether it plays a role in regulating IR-induced PCOS still has yet to be understood. In this study, we respectively established in vitro IR-induced hyperandrogenism in human ovarian granular cells and in vivo IR-induced PCOS models in mice to investigate the action mechanisms of SFRP4 in modulating IR-induced PCOS. Here, we revealed that SFRP4 expression levels in both mRNA and protein were remarkably upregulated in the IR-induced hyperandrogenism with elevated testosterone in the human ovarian granulosa cell line KGN. Under normal conditions without hyperandrogenism, overexpressing SFRP4 triggered the remarkable elevation of testosterone along with the increased nuclear translocation of ß-catenin, cell apoptosis and proinflammatory cytokine IL-6. Furthermore, we found that phytopharmaceutical disruption of SFRP4 by genistein ameliorated IR-induced increase in testosterone in ovarian granular cells, and IR-induced PCOS in high-fat diet obese mice. Our study reveals that SFRP4 contributes to IR-induced PCOS by triggering ovarian granulosa cell hyperandrogenism and apoptosis through the nuclear ß-catenin/IL-6 signaling axis. Elucidating the role of SFRP4 in PCOS may provide a novel therapeutic strategy for IR-related PCOS therapy.


Asunto(s)
Apoptosis , Células de la Granulosa , Hiperandrogenismo , Resistencia a la Insulina , Interleucina-6 , Síndrome del Ovario Poliquístico , Transducción de Señal , beta Catenina , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/patología , Síndrome del Ovario Poliquístico/genética , Femenino , Animales , Humanos , Hiperandrogenismo/metabolismo , Hiperandrogenismo/genética , Hiperandrogenismo/patología , Células de la Granulosa/metabolismo , Células de la Granulosa/patología , beta Catenina/metabolismo , beta Catenina/genética , Ratones , Interleucina-6/metabolismo , Interleucina-6/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Ratones Endogámicos C57BL , Línea Celular
4.
Mol Med ; 30(1): 124, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138413

RESUMEN

BACKGROUND: Obesity is well-established as a significant contributor to the development of insulin resistance (IR) and diabetes, partially due to elevated plasma saturated free fatty acids like palmitic acid (PA). Grb10-interacting GYF Protein 2 (GIGYF2), an RNA-binding protein, is widely expressed in various tissues including the liver, and has been implicated in diabetes-induced cognitive impairment. Whereas, its role in obesity-related IR remains uninvestigated. METHODS: In this study, we employed palmitic acid (PA) exposure to establish an in vitro IR model in the human liver cancer cell line HepG2 with high-dose chronic PA treatment. The cells were stained with fluorescent dye 2-NBDG to evaluate cell glucose uptake. The mRNA expression levels of genes were determined by real-time qRT-PCR (RT-qPCR). Western blotting was employed to examine the protein expression levels. The RNA immunoprecipitation (RIP) was used to investigate the binding between protein and mRNA. Lentivirus-mediated gene knockdown and overexpression were employed for gene manipulation. In mice, an IR model induced by a high-fat diet (HFD) was established to validate the role and action mechanisms of GIGYF2 in the modulation of HFD-induced IR in vivo. RESULTS: In hepatocytes, high levels of PA exposure strongly trigger the occurrence of hepatic IR evidenced by reduced glucose uptake and elevated extracellular glucose content, which is remarkably accompanied by up-regulation of GIGYF2. Silencing GIGYF2 ameliorated PA-induced IR and enhanced glucose uptake. Conversely, GIGYF2 overexpression promoted IR, PTEN upregulation, and AKT inactivation. Additionally, PA-induced hepatic IR caused a notable increase in STAU1, which was prevented by depleting GIGYF2. Notably, silencing STAU1 prevented GIGYF2-induced PTEN upregulation, PI3K/AKT pathway inactivation, and IR. STAU1 was found to stabilize PTEN mRNA by binding to its 3'UTR. In liver cells, tocopherol treatment inhibits GIGYF2 expression and mitigates PA-induced IR. In the in vivo mice model, GIGYF2 knockdown and tocopherol administration alleviate high-fat diet (HFD)-induced glucose intolerance and IR, along with the suppression of STAU1/PTEN and restoration of PI3K/AKT signaling. CONCLUSIONS: Our study discloses that GIGYF2 mediates obesity-related IR by disrupting the PI3K/AKT signaling axis through the up-regulation of STAU1/PTEN. Targeting GIGYF2 may offer a potential strategy for treating obesity-related metabolic diseases, including type 2 diabetes.


Asunto(s)
Proteínas Portadoras , Resistencia a la Insulina , Hígado , Fosfohidrolasa PTEN , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Proteínas de Unión al ARN , Transducción de Señal , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones , Hígado/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Células Hep G2 , Ácido Palmítico , Masculino , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Ratones Endogámicos C57BL , Dieta Alta en Grasa/efectos adversos
5.
J Hazard Mater ; 479: 135625, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39191012

RESUMEN

There has been a serious health and environmental concern in conversion of inorganic mercury (Hg) to the neurotoxin, methylmercury (MeHg) by anaerobic microbes, while very little is known about the potential role of vitamin B9 (VB9) regulator in the biochemical generation of MeHg. This study innovatively investigated bacterial Hg methylation by Geobacter sulfurreducens PCA in the presence of VB9 under two existing scenarios. In the low-complexing scenario, the bacterial MeHg yield reached 68 % higher than that without VB9 within 72 h, which was attributed to free VB9-protected PCA cells relieving oxidative stress, as manifested by the increased expression of Hg methylation gene (hgcAB cluster by 19-48 %). The high-complexing scenario emphasized the intracellular Hg accumulation (38-45 %) after 12 h, as indicated by the increased expression of outer membrane protein-related and mercuric reductase-encoding genes, indicating the inefficient bioavailability of Hg due to a gradual shift from Hg reduction toward Hg0 re-oxidation controlled by competitive ligand exchange. These results suggested that VB9 application significantly raised the potential for bacterial Hg methylation and cellular accumulation, thus proposing insights into the biochemical behaviors of hazardous Hg in farming environments where vulnerable organisms are more possibly co-exposed to higher levels of Hg and VB9.

6.
Obes Rev ; : e13818, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191434

RESUMEN

Interleukin-18 (IL-18), a potent and multifunctional pro-inflammatory cytokine, plays a critical role in regulating ß-cell failure, ß-cell death, insulin resistance, and various complications of diabetes mellitus (DM). It exerts its effects by triggering various signaling pathways, enhancing the production of pro-inflammatory cytokines and nitric oxide (NO), as well as promoting immune cells infiltration and ß-cells death. Abnormal alterations in IL-18 levels have been revealed to be strongly associated with the onset and development of DM and its complications. Targeting IL-18 may present a novel and promising approach for DM therapy. An increasing number of IL-18 inhibitors, including chemical and natural inhibitors, have been developed and have been shown to protect against DM and diabetic complications. This review provides a comprehensive understanding of the production, biological functions, action mode, and activated signaling pathways of IL-18. Next, we shed light on how IL-18 contributes to the pathogenesis of DM and its associated complications with links to its roles in the modulation of ß-cell failure and death, insulin resistance in various tissues, and pancreatitis. Furthermore, the therapeutic potential of targeting IL-18 for the diagnosis and treatment of DM is also highlighted. We hope that this review will help us better understand the functions of IL-18 in the pathogenesis of DM and its complications, providing novel strategies for DM diagnosis and treatment.

7.
Angew Chem Int Ed Engl ; : e202410335, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967098

RESUMEN

Ionogels are promising for soft iontronics, with their network structure playing a pivotal role in determining their performance and potential applications. However, simultaneously achieving mechanical toughness, low hysteresis, self-healing, and fluorescence using existing network structures is challenging. Drawing inspiration from jellyfish, we propose a novel hierarchical crosslinking network structure design for in situ formation of hyperbranched cluster aggregates (HCA) to fabricate polyurea ionogels to overcome these challenges. Leveraging the disparate reactivity of isocyanate groups, we induce the in situ formation of HCA through competing reactions, enhancing toughness and imparting the clustering-triggered emission of ionogel. This synergy between supramolecular interactions in the network and plasticizing effect in ionic liquid leads to reduced hysteresis of the ionogel. Furthermore, the incorporation of NCO-terminated prepolymer with dynamic oxime-urethane bonds (NPU) enables self-healing and enhances stretchability. Our investigations highlight the significant influence of HCA on ionogel performance, showcasing mechanical robustness including high strength (3.5 MPa), exceptional toughness (5.5 MJ m-3), resistance to puncture, and low hysteresis, self-healing, as well as fluorescence, surpassing conventional dynamic crosslinking approaches. This network design strategy is versatile and can meet the various demands of flexible electronics applications.

8.
Water Res ; 262: 122113, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39032335

RESUMEN

Mangrove aquatic ecosystems receive substantial nitrogen (N) inputs from both land and sea, playing critical roles in modulating coastal N fluxes. The microbially-mediated competition between denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in mangrove sediments significantly impacts the N fate and transformation processes. Despite their recognized role in N loss or retention in surface sediments, how these two processes vary with sediment depths and their influential factors remain elusive. Here, we employed a comprehensive approach combining 15N isotope tracer, quantitative PCR (qPCR) and metagenomics to verify the vertical dynamics of denitrification and DNRA across five 100-cm mangrove sediment cores. Our results revealed a clear vertical partitioning, with denitrification dominated in 0-30 cm sediments, while DNRA played a greater role with increasing depths. Quantification of denitrification and DNRA functional genes further explained this phenomenon. Taxonomic analysis identified Pseudomonadota as the primary denitrification group, while Planctomycetota and Pseudomonadota exhibited high proportion in DNRA group. Furthermore, genome-resolved metagenomics revealed multiple salt-tolerance strategies and aromatic compound utilization potential in denitrification assemblages. This allowed denitrification to dominate in oxygen-fluctuating and higher-salinity surface sediments. However, the elevated C/N in anaerobic deep sediments favored DNRA, tending to generate biologically available NH4+. Together, our results uncover the depth-related variations in the microbially-mediated competition between denitrification and DNRA, regulating N dynamics in mangrove ecosystems.


Asunto(s)
Compuestos de Amonio , Desnitrificación , Sedimentos Geológicos , Microbiota , Nitratos , Nitratos/metabolismo , Sedimentos Geológicos/microbiología , Compuestos de Amonio/metabolismo , Humedales
9.
medRxiv ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38947056

RESUMEN

Alzheimer's Disease (AD) is characterized by its complex and heterogeneous etiology and gradual progression, leading to high drug failure rates in late-stage clinical trials. In order to better stratify individuals at risk for AD and discern potential therapeutic targets we employed a novel procedure utilizing cell-based co-regulated gene networks and polygenic risk scores (cbPRSs). After defining genetic subtypes using extremes of cbPRS distributions, we evaluated correlations of the genetic subtypes with previously defined AD subtypes defined on the basis of domain-specific cognitive functioning and neuroimaging biomarkers. Employing a PageRank algorithm, we identified priority gene targets for the genetic subtypes. Pathway analysis of priority genes demonstrated associations with neurodegeneration and suggested candidate drugs currently utilized in diabetes, hypertension, and epilepsy for repositioning in AD. Experimental validation utilizing human induced pluripotent stem cell (hiPSC)-derived astrocytes demonstrated the modifying effects of estradiol, levetiracetam, and pioglitazone on expression of APOE and complement C4 genes, suggesting potential repositioning for AD.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38940806

RESUMEN

Objective: To analyze the intervention effects of targeted nursing based on goal management theory on pregnancy outcomes, blood pressure, postpartum self-efficacy, and quality of life in patients with preeclampsia. Methods: We retrospectively analyzed 90 cases of preeclampsia admitted to Huzhou Maternity & Child Health Care Hospital from January 2022 to June 2023. All patients met the complete inclusion criteria. They were divided into 2 groups based on different nursing interventions: the control group (n = 45) received routine nursing interventions, and the observation group (n = 45) received targeted nursing based on goal management theory. Pregnancy outcomes, blood pressure, postpartum self-efficacy, and quality of life were compared between the 2 groups. Results: The incidence of adverse pregnancy outcomes was 28.89% in the control group and was significantly lower in the observation group at 11.11% (P < .001). Before intervention, there were no significant differences in systolic blood pressure and diastolic blood pressure between the 2 groups (P > .05). After intervention, the systolic blood pressure and diastolic blood pressure were significantly lower in the observation group than in the control group (P < .001). Before intervention, there was no significant difference in Breastfeeding Self-Efficacy Scale scores between the 2 groups (P > .05). After intervention, the Breastfeeding Self-Efficacy Scale scores were significantly higher in the observation group than in the control group (P < .001). Before intervention, there was no significant difference in the Short Form 36 Health Survey scores between the 2 groups (P > .05). After intervention, the Short Form 36 Health Survey scores were significantly higher in the observation group than in the control group (P < .001). Conclusion: Compared with routine nursing, targeted nursing based on goal management theory had superior intervention effects on preeclampsia. It can further alleviate patients' blood pressure, promote postpartum self-efficacy, improve quality of life, and reduce the risk of adverse pregnancy outcomes. It is worthy of clinical application and promotion.

11.
Sci Total Environ ; 944: 173961, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38876338

RESUMEN

The sulfur (S) cycle is an important biogeochemical cycle with profound implications for both cellular- and ecosystem-level processes by diverse microorganisms. Mangrove sediments are a hotspot of biogeochemical cycling, especially for the S cycle with high concentrations of S compounds. Previous studies have mainly focused on some specific inorganic S cycling processes without paying specific attention to the overall S-cycling communities and processes as well as organic S metabolism. In this study, we comprehensively analyzed the distribution, ecological network and assembly mechanisms of S cycling microbial communities and their changes with sediment depths using metagenome sequencing data. The results showed that the abundance of gene families involved in sulfur oxidation, assimilatory sulfate reduction, and dimethylsulfoniopropionate (DMSP) cleavage and demethylation decreased with sediment depths, while those involved in S reduction and dimethyl sulfide (DMS) transformation showed an opposite trend. Specifically, glpE, responsible for converting S2O32- to SO32-, showed the highest abundance in the surface sediment and decreased with sediment depths; in contrast, high abundances of dmsA, responsible for converting dimethyl sulfoxide (DMSO) to DMS, were identified and increased with sediment depths. We identified Pseudomonas and Streptomyces as the main S-cycling microorganisms, while Thermococcus could play an import role in microbial network connections in the S-cycling microbial community. Our statistical analysis showed that both taxonomical and functional compositions were generally shaped by stochastic processes, while the functional composition of organic S metabolism showed a transition from stochastic to deterministic processes. This study provides a novel perspective of diversity distribution of S-cycling functions and taxa as well as their potential assembly mechanisms, which has important implications for maintaining mangrove ecosystem functions.


Asunto(s)
Sedimentos Geológicos , Microbiota , Azufre , Humedales , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Azufre/metabolismo , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética
12.
bioRxiv ; 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38826212

RESUMEN

A blood test that enables surveillance for early-stage pancreatic ductal adenocarcinoma (PDAC) is an urgent need. Independent laboratories have reported PDAC biomarkers that could improve biomarker performance over CA19-9 alone, but the performance of the previously reported biomarkers in combination is not known. Therefore, we conducted a coordinated case/control study across multiple laboratories using common sets of blinded training and validation samples (132 and 295 plasma samples, respectively) from PDAC patients and non-PDAC control subjects representing conditions under which surveillance occurs. We analyzed the training set to identify candidate biomarker combination panels using biomarkers across laboratories, and we applied the fixed panels to the validation set. The panels identified in the training set, CA19-9 with CA199.STRA, LRG1, TIMP-1, TGM2, THSP2, ANG, and MUC16.STRA, achieved consistent performance in the validation set. The panel of CA19-9 with the glycan biomarker CA199.STRA improved sensitivity from 0.44 with 0.98 specificity for CA19-9 alone to 0.71 with 0.98 specificity (p < 0.001, 1000-fold bootstrap). Similarly, CA19-9 combined with the protein biomarker LRG1 and CA199.STRA improved specificity from 0.16 with 0.94 sensitivity for CA19-9 to 0.65 with 0.89 sensitivity (p < 0.001, 1000-fold bootstrap). We further validated significantly improved performance using biomarker panels that did not include CA19-9. This study establishes the effectiveness of a coordinated study of previously discovered biomarkers and identified panels of those biomarkers that significantly increased the sensitivity and specificity of early-stage PDAC detection in a rigorous validation trial.

13.
Mitochondrion ; 78: 101920, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38876297

RESUMEN

Mitochondria orchestrate the production of new mitochondria and the removal of damaged ones to dynamically maintain mitochondrial homeostasis through constant biogenesis and clearance mechanisms. Mitochondrial quality control particularly relies on mitophagy, defined as selective autophagy with mitochondria-targeting specificity. Most ROS are derived from mitochondria, and the physiological concentration of mitochondrial ROS (mtROS) is no longer considered a useless by-product, as it has been proven to participate in immune and autophagy pathway regulation. However, excessive mtROS appears to be a pathogenic factor in several diseases, including acute lung injury (ALI). The interplay between mitophagy and mtROS is complex and closely related to ALI. Here, we review the pathways of mitophagy, the intricate relationship between mitophagy and mtROS, the role of mtROS in the pathogenesis of ALI, and their effects and related progression in ALI induced by different conditions.


Asunto(s)
Lesión Pulmonar Aguda , Mitocondrias , Mitofagia , Especies Reactivas de Oxígeno , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Humanos , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Animales
14.
Res Sq ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798644

RESUMEN

Background: Cellular senescence is a hallmark of aging and has been implicated in Alzheimer's disease (AD) pathogenesis. Cholesterol accumulation drives cellular senescence; however, the underlying mechanisms are unclear. ATP-binding cassette transporter A1 (ABCA1) plays an important role in cholesterol homeostasis. ABCA1 expression and its trafficking is afiltered in APOE4 and AD cellular and mouse models. However, whether ABCA1 trafficking is involved in cellular senescence in APOE4 and AD remains unknown. Methods: We examined the association between cellular senescence and ABCA1 expression in human postmortem brain samples using transcriptomic, histological, and biochemical analyses. An unbiased proteomic screening was performed to identify targets that mediate cellular ABCA1 trafficking. APOE4-TR mice, immortalized, primary and induced pluripotent stem cell (iPSC) models were used to examine the cholesterol-ABCA1-senescence pathways. Results: Bulk and single nuclei transcriptomic profiling of the human dorsolateral prefrontal cortex from the Religious Order Study/Memory Aging Project (ROSMAP) revealed upregulation of cellular senescence transcriptome signatures in AD, which was strongly correlated with ABCA1 expression. Immunofluorescence and immunoblotting analyses confirmed increased ABCA1 expression in AD brain tissues, which was associated with lipofuscin-stained lipids and mTOR phosphorylation. Using discovery proteomics, caveolin-1, a sensor of cellular cholesterol accumulation, was identified to promote ABCA1 endolysosomal trafficking. Greater caveolin-1 expression was found in both APOE4-TR mouse models and AD human brains. Cholesterol induced mTORC1 activation was regulated by ABCA1 expression or its lysosomal trapping. Reducing cholesterol by cyclodextrin in APOE4-TR mice reduced ABCA1 lysosome trapping and increased ABCA1 recycling to efflux cholesterol to HDL particles, reducing mTORC1 activation and senescence-associated neuroinflammation. In human iPSC-derived astrocytes, the reduction of cholesterol by cyclodextrin attenuated inflammatory responses. Conclusions: Cholesterol accumulation in APOE4 and AD induced caveolin-1 expression, which traps ABCA1 in lysosomes to activate mTORC1 pathways and induce cellular senescence. This study provided novel insights into how cholesterol accumulation in APOE4 and AD accelerates senescence.

15.
Int J Neurosci ; : 1-12, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38526065

RESUMEN

BACKGROUND: Craniocerebral interventional surgery is a common and essential treatment for cerebrovascular diseases. Despite continuous progress in interventional diagnosis and treatment technology, there is no effective method to alleviate contrast-induced kidney injuries. In this retrospective cohort study, we investigated the effect of the concurrent use of Dexmedetomidine (DEX) during the perioperative period on the renal function of patients following craniocerebral interventional surgery. METHODS: We identified 228 cases of patients underwent craniocerebral interventional surgery from January 2018 to March 2022. Patients who used DEX during general anesthesia were in the DEX group (DEX group) or that did not use dexmedetomidine as the control group (CON group). The markers of kidney injury were recorded before and within 48 h after surgery. RESULTS: Compared with CON group, the urea nitrogen (BUN) of the DEX group decreased significantly on the first day and the second day after surgery (p < 0.05). The serum cystatin-C and the blood urea nitrogen/creatinine ratio (BUN/Cr) was significantly lower than that in CON group on the second day (p < 0.05). The urine output in the DEX group increased significantly, and the mean arterial pressure (MAP) was higher than the CON group (p < 0.01). There was no difference in postoperative complications, ICU stay time and hospitalization time between the two groups. CONCLUSION: The combined use of dexmedetomidine in general anesthesia for craniocerebral interventional surgery can reduce BUN levels within 48 h after surgery, significantly increase intraoperative urine volume, maintain intraoperative circulation stability.

16.
Cell Commun Signal ; 22(1): 92, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38303059

RESUMEN

Inherited retinal degenerations (IRDs) are a group of untreatable and commonly blinding diseases characterized by progressive photoreceptor loss. IRD pathology has been linked to an excessive activation of cyclic nucleotide-gated channels (CNGC) leading to Na+- and Ca2+-influx, subsequent activation of voltage-gated Ca2+-channels (VGCC), and further Ca2+ influx. However, a connection between excessive Ca2+ influx and photoreceptor loss has yet to be proven.Here, we used whole-retina and single-cell RNA-sequencing to compare gene expression between the rd1 mouse model for IRD and wild-type (wt) mice. Differentially expressed genes indicated links to several Ca2+-signalling related pathways. To explore these, rd1 and wt organotypic retinal explant cultures were treated with the intracellular Ca2+-chelator BAPTA-AM or inhibitors of different Ca2+-permeable channels, including CNGC, L-type VGCC, T-type VGCC, Ca2+-release-activated channel (CRAC), and Na+/Ca2+ exchanger (NCX). Moreover, we employed the novel compound NA-184 to selectively inhibit the Ca2+-dependent protease calpain-2. Effects on the retinal activity of poly(ADP-ribose) polymerase (PARP), sirtuin-type histone-deacetylase, calpains, as well as on activation of calpain-1, and - 2 were monitored, cell death was assessed via the TUNEL assay.While rd1 photoreceptor cell death was reduced by BAPTA-AM, Ca2+-channel blockers had divergent effects: While inhibition of T-type VGCC and NCX promoted survival, blocking CNGCs and CRACs did not. The treatment-related activity patterns of calpains and PARPs corresponded to the extent of cell death. Remarkably, sirtuin activity and calpain-1 activation were linked to photoreceptor protection, while calpain-2 activity was related to degeneration. In support of this finding, the calpain-2 inhibitor NA-184 protected rd1 photoreceptors.These results suggest that Ca2+ overload in rd1 photoreceptors may be triggered by T-type VGCCs and NCX. High Ca2+-levels likely suppress protective activity of calpain-1 and promote retinal degeneration via activation of calpain-2. Overall, our study details the complexity of Ca2+-signalling in photoreceptors and emphasizes the importance of targeting degenerative processes specifically to achieve a therapeutic benefit for IRDs. Video Abstract.


Asunto(s)
Ácido Egtácico/análogos & derivados , Degeneración Retiniana , Sirtuinas , Ratones , Animales , Degeneración Retiniana/metabolismo , Calpaína/metabolismo , Intercambiador de Sodio-Calcio , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patología , Muerte Celular , Sirtuinas/metabolismo
17.
Sensors (Basel) ; 24(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38400253

RESUMEN

The collaborative robot can complete various drilling tasks in complex processing environments thanks to the high flexibility, small size and high load ratio. However, the inherent weaknesses of low rigidity and variable rigidity in robots bring detrimental effects to surface quality and drilling efficiency. Effective online monitoring of the drilling quality is critical to achieve high performance robotic drilling. To this end, an end-to-end drilling-state monitoring framework is developed in this paper, where the drilling quality can be monitored through online-measured vibration signals. To evaluate the drilling effect, a Canny operator-based edge detection method is used to quantify the inclination state of robotic drilling, which provides the data labeling information. Then, a robotic drilling inclination state monitoring model is constructed based on the Resnet network to classify the drilling inclination states. With the aid of the training dataset labeled by different inclination states and the end-to-end training process, the relationship between the inclination states and vibration signals can be established. Finally, the proposed method is verified by collaborative robotic drilling experiments with different workpiece materials. The results show that the proposed method can effectively recognize the drilling inclination state with high accuracy for different workpiece materials, which demonstrates the effectiveness and applicability of this method.

18.
Signal Transduct Target Ther ; 9(1): 50, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38424050

RESUMEN

Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family (PGC-1s), consisting of three members encompassing PGC-1α, PGC-1ß, and PGC-1-related coactivator (PRC), was discovered more than a quarter-century ago. PGC-1s are essential coordinators of many vital cellular events, including mitochondrial functions, oxidative stress, endoplasmic reticulum homeostasis, and inflammation. Accumulating evidence has shown that PGC-1s are implicated in many diseases, such as cancers, cardiac diseases and cardiovascular diseases, neurological disorders, kidney diseases, motor system diseases, and metabolic disorders. Examining the upstream modulators and co-activated partners of PGC-1s and identifying critical biological events modulated by downstream effectors of PGC-1s contribute to the presentation of the elaborate network of PGC-1s. Furthermore, discussing the correlation between PGC-1s and diseases as well as summarizing the therapy targeting PGC-1s helps make individualized and precise intervention methods. In this review, we summarize basic knowledge regarding the PGC-1s family as well as the molecular regulatory network, discuss the physio-pathological roles of PGC-1s in human diseases, review the application of PGC-1s, including the diagnostic and prognostic value of PGC-1s and several therapies in pre-clinical studies, and suggest several directions for future investigations. This review presents the immense potential of targeting PGC-1s in the treatment of diseases and hopefully facilitates the promotion of PGC-1s as new therapeutic targets.


Asunto(s)
Neoplasias , PPAR gamma , Humanos , Estrés Oxidativo , Neoplasias/genética , Inflamación , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
19.
Artículo en Inglés | MEDLINE | ID: mdl-38402375

RESUMEN

As indicated by longitudinal observation, autism has difficulty controlling emotions to a certain extent in early childhood, and most children's emotional and behavioral problems are further aggravated with the growth of age. This study aimed at exploring the correlation between white matter and white matter fiber bundle connectivity characteristics and their emotional regulation ability in children with autism using machine learning methods, which can lay an empirical basis for early clinical intervention of autism. Fifty-five high risk of autism spectrum disorder (HR-ASD) children and 52 typical development (TD) children were selected to complete the skull 3D-T1 structure and diffusion tensor imaging (DTI). The emotional regulation ability of the two groups was compared using the still-face paradigm (SFP). The classification and regression models of white matter characteristics and white matter fiber bundle connections of emotion regulation ability in the HR-ASD group were built based on the machine learning method. The volume of the right amygdala (R2 = 0.245) and the volume of the right hippocampus (R2 = 0.197) affected constructive emotion regulation strategies. FA (R2 = 0.32) and MD (R2 = 0.34) had the predictive effect on self-stimulating behaviour. White matter fiber bundle connection predicted constructive regulation strategies (positive edging R2 = 0.333, negative edging R2 = 0.334) and mother-seeking behaviors (positive edging R2 = 0.667, negative edging R2 = 0.363). The emotional regulation ability of HR-ASD children is significantly correlated with the connections of multiple white matter fiber bundles, which is a potential neuro-biomarker of emotional regulation ability.

20.
J Am Chem Soc ; 146(5): 3427-3437, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38243892

RESUMEN

Despite half a century's advance in the field of transition-metal-catalyzed asymmetric alkene hydrogenation, the enantioselective hydrogenation of purely alkyl-substituted 1,1-dialkylethenes has remained an unmet challenge. Herein, we describe a chiral PCNOx-pincer iridium complex for asymmetric transfer hydrogenation of this alkene class with ethanol, furnishing all-alkyl-substituted tertiary stereocenters. High levels of enantioselectivity can be achieved in the reactions of substrates with secondary/primary and primary/primary alkyl combinations. The catalyst is further applied to the redox isomerization of disubstituted alkenols, producing a tertiary stereocenter remote to the resulting carbonyl group. Mechanistic studies reveal a dihydride species, (PCNOx)Ir(H)2, as the catalytically active intermediate, which can decay to a dimeric species (κ3-PCNOx)IrH(µ-H)2IrH(κ2-PCNOx) via a ligand-remetalation pathway. The catalyst deactivation under the hydrogenation conditions with H2 is much faster than that under the transfer hydrogenation conditions with EtOH, which explains why the (PCNOx)Ir catalyst is effective for the transfer hydrogenation but ineffective for the hydrogenation. The suppression of di-to-trisubstituted alkene isomerization by regioselective 1,2-insertion is partly responsible for the success of this system, underscoring the critical role played by the pincer ligand in enantioselective transfer hydrogenation of 1,1-dialkylethenes. Moreover, computational studies elucidate the significant influence of the London dispersion interaction between the ligand and the substrate on enantioselectivity control, as illustrated by the complete reversal of stereochemistry through cyclohexyl-to-cyclopropyl group substitution in the alkene substrates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA