Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(30): 20951-20962, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39038275

RESUMEN

Conventional Li-ion battery intercalation cathodes leverage charge compensation that is formally associated with redox on the transition metal. Employing the anions in the charge compensation mechanism, so-called anion redox, can yield higher capacities beyond the traditional limitations of intercalation chemistry. Here, we aim to understand the structural considerations that enable anion oxidation and focus on processes that result in structural changes, such as the formation of persulfide bonds. Using a Li-rich metal sulfide as a model system, we present both first-principles simulations and experimental data that show that cation vacancies are required for anion oxidation. First-principles simulations show that the oxidation of sulfide to persulfide only occurs when a neighboring vacancy is present. To experimentally probe the role of vacancies in anion redox processes, we introduce vacancies into the Li2TiS3 phase while maintaining a high valency of Ti. When the cation sublattice is fully occupied and no vacancies can be formed through transition metal oxidation, the material is electrochemically inert. Upon introduction of vacancies, the material can support high degrees of anion redox, even in the absence of transition metal oxidation. The model system offers fundamental insights to deepen our understanding of structure-property relationships that govern reversible anion redox in sulfides and demonstrates that cation vacancies are required for anion oxidation, in which persulfides are formed.

2.
Chem Mater ; 36(11): 5687-5697, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38883428

RESUMEN

Conventional intercalation-based cathode materials in Li-ion batteries are based on charge compensation of the redox-active cation and can only intercalate one mole of electron per formula unit. Anion redox, which employs the anion sublattice to compensate charge, is a promising way to achieve multielectron cathode materials. Most anion redox materials still face the problems of slow kinetics and large voltage hysteresis. One potential solution to reduce voltage hysteresis is to increase the covalency of the metal-ligand bonds. By substituting Mn into the electrochemically inert Li1.33Ti0.67S2 (Li2TiS3), anion redox can be activated in the Li1.33-2y/3Ti0.67-y/3Mn y S2 (y = 0-0.5) series. Not only do we observe substantial anion redox, but the voltage hysteresis is significantly reduced, and the rate capability is dramatically enhanced. The y = 0.3 phase exhibits excellent rate and cycling performance, maintaining 90% of the C/10 capacity at 1C, which indicates fast kinetics for anion redox. X-ray absorption spectroscopy (XAS) shows that both the cation and anion redox processes contribute to the charge compensation. We attribute the drop in hysteresis and increase in rate performance to the increased covalency between the metal and the anion. Electrochemical signatures suggest the anion redox mechanism resembles holes on the anion, but the S K-edge XAS data confirm persulfide formation. The mechanism of anion redox shows that forming persulfides can be a low hysteresis, high rate capability mechanism enabled by the appropriate metal-ligand covalency. This work provides insights into how to design cathode materials with anion redox to achieve fast kinetics and low voltage hysteresis.

3.
Sci Rep ; 13(1): 3534, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864155

RESUMEN

The attraction between unequally sized like magnetic poles is characterized herein. Finite element analysis (FEA) simulation has verified that attraction can occur between like poles. Between two unequally sized like poles with various dimensions and alignments, a turning point (TP) appears on the curves of force vs. distance between them, which is caused by the localized demagnetization (LD). The LD plays a role far before the distance between the poles reduces to the TP. The LD area may have a changed polarity, making the attraction possible and not in violation of basic laws of magnetism. Here, the LD levels have been determined using FEA simulation, and the factors affecting the LD have been explored, including the geometry, the linearity of the BH curve, and the alignment of the magnet pairs. Novel devices can be designed with attraction between the centers of such like poles and repulsion when off-center.

4.
Artículo en Inglés | MEDLINE | ID: mdl-36754849

RESUMEN

Mg-S batteries are a promising next-generation system for beyond conventional Li-ion chemistry. The Mg-S architecture pairs a Mg metal anode with an inexpensive, high-capacity S8 cathode. However, S8-based cathodes exhibit the "polysulfide shuttle" effect, wherein soluble partially reduced Sx2- species generated at the cathode diffuse to and react with the anode. While dissolved polysulfides may undergo reactions to form Li+-permeable layers in Li-S systems, the interfaces on Mg anodes are passivating. In this work, we probe the reactivity of various Mg polysulfide solutions at the Mg anode interface. Mg polysulfide solutions are prepared without any chelating agents to closely mimic conditions in a Mg-S cell. The polysulfides are synthesized by reacting Mg metal and S8 in electrolyte, and the speciation is controlled by varying the Mg:S precursor ratio. S-poor precursor ratios produce magnesium polysulfide solutions with a higher proportion of short-chain polysulfides that react at the Mg anode faster than the longer-chain analogues. Anode passivation can be slowed by shifting the polysulfide equilibria toward longer-chain polysulfides through addition of S8.

5.
ACS Appl Mater Interfaces ; 13(25): 29461-29470, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34142812

RESUMEN

As Li-ion battery optimization approaches theoretical limits, interest has grown in designing next-generation batteries from low-cost earth-abundant materials. Mg-S batteries are promising candidates, exhibiting widespread abundance of elemental precursors and a relatively large theoretical energy density albeit at lower cell voltage. However, Mg-S batteries exhibit poor reversibility, in part due to interactions between dissolved polysulfides and the Mg anode. Herein, we employ electrochemical experiments using Ag2S quasi-reference electrodes to probe the interactions between Mg anodes and dissolved polysulfides. We show that Mg2+ reduction (charging) is impeded in the presence of polysulfides, while Mg metal oxidation (discharging) remains facile. Large reduction overpotentials arise due to the formation of a passivation layer on the anode surface, likely composed primarily of MgS. The passivation layer is removed under oxidative conditions but quickly reforms during reduction. We discover that dissolved S8 influences the rate of MgS formation by shifting the polysulfide disproportionation equilibria. Shorter-chain polysulfides react more readily than longer-chain polysulfides at the Mg electrode, and thus, film formation is mediated by the electrochemical generation of shorter-chain polysulfide species.

6.
Sci Rep ; 11(1): 12555, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34131203

RESUMEN

This investigation reveals the mystery of the cases where magnetic like poles attract each other, and unlike poles repel one another. It is identified that for two unequally sized like poles, the pole with a higher Pc (permeance coefficient) causes a localized demagnetization (LD) to the pole with a lower Pc. If the LD is large enough, the polarity of a localized area can be reversed, resulting in an attraction between these two like poles in the LD area in a small gap. Two unusual behaviors are observed: (1) an inflection point IP appears on the force vs gap curves of all the unequally sized like poles since they have different Pc. Normally, the like poles' repelling force increases when the gap decreases, but this IP results in nonmonotonic curves, even an attractive force in a small gap; (2) for some NdFeB magnets with a low coercivity and nonlinear B-H curve in the 2nd quadrant, a repulsion can occur for these unequal sized unlike poles, after previously pairing with their like poles that left an unrecoverable LD and reversed polarity area. The relationship of the LD, the Pc ratio, and the B-H curve are also explored in this paper.

7.
Inorg Chem ; 59(6): 4096-4108, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32105456

RESUMEN

To evaluate the effect of ligand geometry on the coordination number, number of inner-sphere water molecules, and affinity for anions of the corresponding lanthanide complex, six tris-bidentate 1,2-hydroxypyridonate (HOPO) europium(III) complexes with different cap sizes were synthesized and characterized. Wider or more flexible ligand caps, such as in EuIII-TREN-Gly-HOPO and EuIII-3,3-Gly-HOPO, enable the formation of nine-coordinate europium(III) complexes bearing three inner-sphere water molecules. In contrast, smaller or more rigid caps, such as in EuIII-TREN-HOPO, EuIII-2,2-Li-HOPO, EuIII-3,3-Li-HOPO, and EuIII-2,2-Gly-HOPO, favor eight-coordinate europium(III) complexes that have only two inner-sphere water molecules. Notably, there is no correlation between the number of inner-sphere water molecules and the affinity of the Eu(III) complexes for phosphate. Some q = 2 (EuIII-TREN-HOPO, EuIII-3,3-Li-HOPO, and EuIII-2,2-Gly-HOPO) and some q = 3 (EuIII-TREN-Gly-HOPO) complexes have no affinity for anions, whereas one q = 2 complex (EuIII-2,2-Li-HOPO) and one q = 3 complex (EuIII-3,3-Gly-HOPO) have a high affinity for phosphate. For the latter two systems, each inner-sphere water molecule is replaced with a phosphate anion, resulting in the formation of EuLPi2 and EuLPi3 adducts, respectively.

8.
Inorg Chem ; 58(23): 16087-16099, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31738520

RESUMEN

Although recognition of hard anions by hard metal ions is primarily achieved via direct coordination, electrostatic and hydrogen-bonding interactions also play essential roles in tuning the affinity of such supramolecular receptors for their target. In the case of EuIII hydroxypyridinone-based complexes, the addition of a single charged group (-NH3+, -CO2-, or -SO3-) or neutral hydrogen-bonding moiety (-OH) peripheral to the open coordination site substantially affects the affinity of the metal receptor for phosphate in water at neutral pH. A single primary ammonium increases the first association constant for phosphate in neutral water by 2 orders of magnitude over its neutral analogue. The addition of a peripheral alcohol group also increases the affinity of the receptor but to a lesser degree (21-fold). On the other hand, negatively charged complexes bearing either a carboxylate or sulfate moiety have negligible affinity for phosphate. Interestingly, the peripheral group also influences the stoichiometry of the lanthanide receptor for phosphate. While the complex bearing a -NH3+ group binds phosphate in a 1:2 ratio, those with -OH and H (control) both form 1:3 complexes. Although the positively charged EuIII-Lys-HOPO has the highest Ka1 for phosphate, a greater increase in luminescence intensity (36-fold) is observed with the neutral EuIII-Ser-HOPO complex. Notably, whereas the affinity of the EuIII complexes for phosphate is substantially influenced by the presence of a single charged group or hydrogen-bond donor, their selectivity for phosphate over competing anions remains unaffected by the addition of the peripheral groups.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA