Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
IEEE/ACM Trans Comput Biol Bioinform ; 18(4): 1474-1480, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-31581093

RESUMEN

Genome-scale reconstructed metabolic networks have provided an organism specific understanding of cellular processes and their relations to phenotype. As they are deemed essential to study metabolism, the number of organisms with reconstructed metabolic networks continues to increase. This everlasting research interest lead to the development of online systems/repositories that store existing reconstructions and enable new model generation, integration, and constraint-based analyses. While features that support model reconstruction are widely available, current systems lack the means to help users who are interested in analyzing the topology of the reconstructed networks. Here, we present the Database of Reconstructed Metabolic Networks - DORMAN. DORMAN is a centralized online database that stores SBML-based reconstructed metabolic networks published in the literature, and provides web-based computational tools for visualizing and analyzing the model topology. Novel features of DORMAN are (i) interactive visualization interface that allows rendering of the complete network as well as editing and exporting the model, (ii) hierarchical navigation that provides efficient access to connected entities in the model, (iii) built-in query interface that allow posing topological queries, and finally, and (iv) model comparison tool that enables comparing models with different nomenclatures, using approximate string matching. DORMAN is online and freely accessible at http://ciceklab.cs.bilkent.edu.tr/dorman.


Asunto(s)
Bases de Datos Genéticas , Redes y Vías Metabólicas , Metabolómica/métodos , Algoritmos , Internet , Programas Informáticos
2.
Sci Total Environ ; 716: 134923, 2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31836240

RESUMEN

Water resources allocation is very important for water resources management. However, it is subject to the uncertainty in water availability (WA) or water demand (WD), as well as the pressure exerted by multi-stakeholders. Therefore, we propose a general framework as following: (i) applying Bayes theorem to develop a forecasting model for WA and WD probability distributions; (ii) constructing the matching matrix showing matching degree between WA and WD and assessing the probabilistic behavior of water resources allocation solutions based on the matching matrices; and (iii) performing the trade-off analysis among the solutions under different stakeholders' objectives to meet requirements of multi-stakeholders. Longgang River basin is selected as a case study area to demonstrate the proposed framework. Results show that, the forecast probability distributions of WA and WD may be updated timely with newly introduced data, and reflect their statistical characters well. Furthermore, the matching matrices illustrate the probabilities of the possible outcomes of each allocation solution clearly. From the probabilistic assessment; the results suggest: 21160×104 m3 diverted water are required to surely satisfy the current water demands, which is exactly the amount currently diverted for the study area. The proposed framework provides the updated probabilistic assessment for the possible outcomes, contributing to stakeholders to perform the tradeoff with each other. It makes significant contributions to address water allocation issues under uncertainty and is worthy to be applied broadly.

3.
Artículo en Inglés | MEDLINE | ID: mdl-25267793

RESUMEN

Metabolic networks have become one of the centers of attention in life sciences research with the advancements in the metabolomics field. A vast array of studies analyzes metabolites and their interrelations to seek explanations for various biological questions, and numerous genome-scale metabolic networks have been assembled to serve for this purpose. The increasing focus on this topic comes with the need for software systems that store, query, browse, analyze and visualize metabolic networks. PathCase Metabolomics Analysis Workbench (PathCaseMAW) is built, released and runs on a manually created generic mammalian metabolic network. The PathCaseMAW system provides a database-enabled framework and Web-based computational tools for browsing, querying, analyzing and visualizing stored metabolic networks. PathCaseMAW editor, with its user-friendly interface, can be used to create a new metabolic network and/or update an existing metabolic network. The network can also be created from an existing genome-scale reconstructed network using the PathCaseMAW SBML parser. The metabolic network can be accessed through a Web interface or an iPad application. For metabolomics analysis, steady-state metabolic network dynamics analysis (SMDA) algorithm is implemented and integrated with the system. SMDA tool is accessible through both the Web-based interface and the iPad application for metabolomics analysis based on a metabolic profile. PathCaseMAW is a comprehensive system with various data input and data access subsystems. It is easy to work with by design, and is a promising tool for metabolomics research and for educational purposes. Database URL: http://nashua.case.edu/PathwaysMAW/Web.


Asunto(s)
Bases de Datos Genéticas , Internet , Redes y Vías Metabólicas , Metabolómica/métodos , Interfaz Usuario-Computador , Programas Informáticos
4.
Methods ; 69(3): 282-97, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25064251

RESUMEN

Comparing and identifying matching metabolites, reactions, and compartments in genome-scale reconstructed metabolic networks can be difficult due to inconsistent naming in different networks. In this paper, we propose metabolite and reaction matching techniques for matching metabolites and reactions in a given metabolic network to metabolites and reactions in another metabolic network. We employ a variety of techniques that include approximate string matching, similarity score functions and multi-step filtering techniques, all enhanced by a set of rules based on the underlying metabolic biochemistry. The proposed techniques are evaluated by an empirical study on four pairs of metabolic networks, and significant accuracy gains are achieved using the proposed metabolite and reaction identification techniques.


Asunto(s)
Genoma , Redes y Vías Metabólicas/genética , Modelos Biológicos , Minería de Datos , Bases de Datos Genéticas , Humanos
5.
Health Inf Sci Syst ; 1: 4, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-25825656

RESUMEN

BACKGROUND: Kyoto Encyclopedia of Genes and Genomes (KEGG) is an online and integrated molecular database for several organisms. KEGG has been a highly useful site, helping domain scientists understand, research, study, and teach metabolisms by linking sequenced genomes to higher level systematic functions. KEGG databases are accessible through the web pages of the system, but the capabilities of the web interface are limited. Third party systems have been built over the KEGG data to provide extensive functionalities. However, there have been no attempts towards providing a tablet interface for KEGG data. Recognizing the rise of mobile technologies and the importance of tablets in education, this paper presents the design and implementation of iPathCase(KEGG), an iPad interface for KEGG data, which is empowered with multiple browsing and visualization capabilities. RESULTS: iPathCase(KEGG) has been implemented and is available, free of charge, in the Apple App Store (locatable by searching for "Pathcase" in the app store). The application provides browsing and interactive visualization functionalities on the KEGG data. Users can pick pathways, visualize them, and see detail pages of reactions and molecules using the multi-touch interface of iPad. CONCLUSIONS: iPathCase(KEGG) provides a mobile interface to access KEGG data. Interactive visualization and browsing functionalities let users to interact with the data in multiple ways. As the importance of tablets and their usage in research education continue to rise, we think iPathCase(KEGG) will be a useful tool for life science instructors and researchers.

6.
J Bioinform Comput Biol ; 10(1): 1240003, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22809304

RESUMEN

With the recent advances in experimental technologies, such as gas chromatography and mass spectrometry, the number of metabolites that can be measured in biofluids of individuals has markedly increased. Given a set of such measurements, a very common task encountered by biologists is to identify the metabolic mechanisms that lead to changes in the concentrations of given metabolites and interpret the metabolic consequences of the observed changes in terms of physiological problems, nutritional deficiencies, or diseases. In this paper, we present the steady-state metabolic network dynamics analysis (SMDA) approach in detail, together with its application in a cystic fibrosis study. We also present a computational performance evaluation of the SMDA tool against a mammalian metabolic network database. The query output space of the SMDA tool is exponentially large in the number of reactions of the network. However, (i) larger numbers of observations exponentially reduce the output size, and (ii) exploratory search and browsing of the query output space is provided to allow users to search for what they are looking for.


Asunto(s)
Redes y Vías Metabólicas , Metabolómica/métodos , Fibrosis Quística/metabolismo , Humanos , Modelos Biológicos
7.
BMC Syst Biol ; 6(1): 67, 2012 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-22697505

RESUMEN

BACKGROUND: Integration of metabolic pathways resources and metabolic network models, and deploying new tools on the integrated platform can help perform more effective and more efficient systems biology research on understanding the regulation of metabolic networks. Therefore, the tasks of (a) integrating under a single database environment regulatory metabolic networks and existing models, and (b) building tools to help with modeling and analysis are desirable and intellectually challenging computational tasks. RESULTS: PathCase Systems Biology (PathCase-SB) is built and released. This paper describes PathCase-SB user interfaces developed to date. The current PathCase-SB system provides a database-enabled framework and web-based computational tools towards facilitating the development of kinetic models for biological systems. PathCase-SB aims to integrate systems biology models data and metabolic network data of selected biological data sources on the web (currently, BioModels Database and KEGG, respectively), and to provide more powerful and/or new capabilities via the new web-based integrative framework. CONCLUSIONS: Each of the current four PathCase-SB interfaces, namely, Browser, Visualization, Querying, and Simulation interfaces, have expanded and new capabilities as compared with the original data sources. PathCase-SB is already available on the web and being used by researchers across the globe.


Asunto(s)
Bases de Datos Factuales , Programas Informáticos , Biología de Sistemas/métodos , Interfaz Usuario-Computador , Simulación por Computador , Glucólisis/fisiología , Internet , Redes y Vías Metabólicas , Modelos Biológicos
8.
BMC Syst Biol ; 5: 188, 2011 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-22070889

RESUMEN

BACKGROUND: Integration of metabolic pathways resources and regulatory metabolic network models, and deploying new tools on the integrated platform can help perform more effective and more efficient systems biology research on understanding the regulation in metabolic networks. Therefore, the tasks of (a) integrating under a single database environment regulatory metabolic networks and existing models, and (b) building tools to help with modeling and analysis are desirable and intellectually challenging computational tasks. DESCRIPTION: PathCase Systems Biology (PathCase-SB) is built and released. The PathCase-SB database provides data and API for multiple user interfaces and software tools. The current PathCase-SB system provides a database-enabled framework and web-based computational tools towards facilitating the development of kinetic models for biological systems. PathCase-SB aims to integrate data of selected biological data sources on the web (currently, BioModels database and KEGG), and to provide more powerful and/or new capabilities via the new web-based integrative framework. This paper describes architecture and database design issues encountered in PathCase-SB's design and implementation, and presents the current design of PathCase-SB's architecture and database. CONCLUSIONS: PathCase-SB architecture and database provide a highly extensible and scalable environment with easy and fast (real-time) access to the data in the database. PathCase-SB itself is already being used by researchers across the world.


Asunto(s)
Bases de Datos Factuales , Redes y Vías Metabólicas , Modelos Biológicos , Glucólisis/fisiología , Programas Informáticos , Biología de Sistemas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA