Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
IEEE Trans Med Robot Bionics ; 6(1): 153-162, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39184343

RESUMEN

Many intravascular procedures are prefaced by the placement of a slender wire called a guidewire. Steering these guidewires is met with challenges in controlling the distal end along with the possibility of damaging vessel walls, or even perforation, which can be fatal. To this end, utilizing robotic guidewires can improve steerability and enable force feedback through intrinsic force sensing. Enabling force sensing contains challenges such as discrete sensor placements in continuous structures and non-unique force distributions for a given deflection. In this work, we utilize image feedback and a Cosserat rod model to estimate and localize forces along the body of a micro-scale tendon-driven guidewire robot. This includes additional modeling of friction and hysteresis that is often neglected for force sensing. The model is tested on a variety of notched nitinol tubes under gravity loading with the shape predictions having an average RMSE of 0.46 mm. Utilization of friction and hysteresis models provide shape predictions with an RMSE of 1.22 mm compared to an uncompensated model (RMSE = 1.62 mm) for approximately 180° bends. The methods presented are able to localize forces with an average error of 4.79 mm (5.15% of the length) while force magnitudes are estimated with an average error of 13.03 mN.

2.
Oper Neurosurg (Hagerstown) ; 26(4): 389-395, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37921474

RESUMEN

BACKGROUND AND OBJECTIVES: To improve the outcomes of minimally invasive, endoscopic, intracranial procedures, steerable robotic tools have been developed but still require thorough evaluation before use in a clinical setting. This paper compares a novel steerable robotic neuroendoscope tool against a standard rigid tool. METHODS: Seventeen participants, 8 nonmedical and 9 medical (neurosurgery residents and fellows), were recruited. The evaluation trial consisted of a task that was completed using either a rigid tool or the steerable tool, followed by the completion of a qualitative survey. Target reach time and tool movement volume (TMV) were recorded for each trial and analyzed. The tools were evaluated within a realistic phantom model of the brain. RESULTS: Preclinical evaluation of both tools showed that average target reach time for the steerable tool among medical personnel (15.0 seconds) was longer than that of the rigid tool (5.9 seconds). However, the average TMV for the steerable tool (0.178 cm 3 ) was much lower than that of the rigid tool (0.501 cm 3 ) for medical personnel, decreasing the TMV by 64.47%. CONCLUSION: The steerable tool required more training and practice in comparison with the standard rigid tool, but it decreased the overall endoscope movement volume, which is a source of parenchymal injury associated with endoscopic procedures.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Humanos , Neuroendoscopios , Endoscopía , Procedimientos Neuroquirúrgicos
3.
IEEE Trans Med Robot Bionics ; 5(4): 867-878, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38099239

RESUMEN

Mitral regurgitation (MR) is one of the most common valvular abnormalities, and the gold-standard for treatment is surgical mitral valve repair/replacement. Most patients with severe MR are over the age of 75, which makes open-heart surgery challenging. Thus, minimally invasive surgeries using transcatheter approaches are gaining popularity. This paper proposes the next generation of a robotic transcatheter delivery system for the mitral valve implant that focuses on the design of the actuation system, modeling, and task space control. The proposed actuation system is compact while still enabling bidirectional torsion, bending, and prismatic joint motion. A pulley structure is employed to actuate the torsion and bending joints using only one motor per joint in conjunction with an antagonistic passive spring to reduce tendon slack. The robotic transcatheter is also optimized to increase its stability and reduce bending deflection. An inverse kinematics model (with an optimization algorithm), singularity analysis method, and joint hysteresis and compensation model are developed and verified. Finally, a task space controller is also proposed. Experiments, including trajectory tracking and demonstrations of the robot motion in an ex vivo porcine heart and a phantom heart through a tortuous path are presented.

4.
IEEE Robot Autom Lett ; 8(6): 3629-3636, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38152328

RESUMEN

Mitral regurgitation (MR) is the most common type of valvular heart disease, affecting over 2% of the world population, and the gold-standard treatment is surgical mitral valve repair/replacement. Compared to open-heart surgeries, minimally invasive surgeries (MIS) using transcatheter approaches have become popular because of their notable benefits such as less postoperative pain, shorter hospital stay, and faster recovery time. However, commercially available catheters are manually actuated, causing over-exposure of clinical staff to radiation and increased risk of human error during medical interventions. To tackle this problem, in this letter, we propose a telerobotic transcatheter delivery system, which consists of a robotic catheter (5.7 mm OD), a reinforced guide tube (1.11m length), and an actuation system. We present the robotic system design, fabrication of key components, and static model of reinforced quadlumen tube. The robot interface design enables the user to intuitively control the robot. We demonstrate the effectiveness of the telerobotic transcatheter delivery system and reinforced quadlumen tube in a realistic human cardiovascular phantom for preclinical evaluation.

5.
IEEE Trans Med Robot Bionics ; 5(4): 1105-1109, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38912526

RESUMEN

Minimally invasive procedures, such as endoscopic third ventriculostomy (ETV), benefit from the increased dexterity and safety that surgical continuum robots can bring. However, due to their natural compliance, new compatible end-effectors, such as graspers or scissors, must be developed and their actuation must be considered when developing the robotic structures in which they are housed due to the inherent coupling that will be introduced. In this paper, we integrate a tendon-driven meso-scale grasper, with a closed configuration diameter of 1.69 mm, into a 2 degree-of-freedom (DoF) tendon-driven neurosurgical robot with an outer diameter of less than 2 mm. Furthermore, the kinematics of the grasper is validated and an analysis of the coupling between the grasper and the robotic joints is conducted in order to evaluate the design performance.

6.
IEEE Trans Med Robot Bionics ; 4(4): 922-934, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37214350

RESUMEN

Minimally-invasive surgeries using transcatheter approaches and sophisticated imaging modalities are gaining popularity to treat mitral regurgitation (MR). This paper proposes the next generation of a robotic catheter to deliver an implant onto the mitral valve (MV) through a transseptal approach. The proposed robot has an outer diameter (OD) of 5.7 mm, a rigid distal end length of 20 mm, a prismatic tube that can be advanced by 50-60 mm, and a bending joint that can easily bend 120° to reach the valve opening. The implant can be rotated 75° bidirectionally by the distal torsion joint to orient it with the MV leaflet for precise implantation. The robotic joints are modeled individually, the forward and inverse kinematics are derived, and the robot motion validation is carried out through experimentation. A modified kinematics (MK) model, Prandtl-Ishlinskii (PI) hysteresis model, and hybrid of MK and PI model are used to compensate for the catheter nonlinearities. A preliminary study is conducted to evaluate if force sensing can be used to compensate for the effects of fluid flow. Also, the implantation procedure is demonstrated in a phantom heart.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA