Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(19)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36236664

RESUMEN

The Internet of Things (IoT) represents a growing aspect of how entities, including humans and organizations, are likely to connect with others in their public and private interactions. The exponential rise in the number of IoT devices, resulting from ever-growing IoT applications, also gives rise to new opportunities for exploiting potential security vulnerabilities. In contrast to conventional cryptosystems, frameworks that incorporate fine-grained access control offer better opportunities for protecting valuable assets, especially when the connectivity level is dense. Functional encryption is an exciting new paradigm of public-key encryption that supports fine-grained access control, generalizing a range of existing fine-grained access control mechanisms. This survey reviews the recent applications of functional encryption and the major cryptographic primitives that it covers, identifying areas where the adoption of these primitives has had the greatest impact. We first provide an overview of different application areas where these access control schemes have been applied. Then, an in-depth survey of how the schemes are used in a multitude of applications related to IoT is given, rendering a potential vision of security and integrity that this growing field promises. Towards the end, we identify some research trends and state the open challenges that current developments face for a secure IoT realization.

2.
Entropy (Basel) ; 22(1)2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-33285785

RESUMEN

In the smart grid (SG) environment, consumers are enabled to alter electricity consumption patterns in response to electricity prices and incentives. This results in prices that may differ from the initial price pattern. Electricity price and demand forecasting play a vital role in the reliability and sustainability of SG. Forecasting using big data has become a new hot research topic as a massive amount of data is being generated and stored in the SG environment. Electricity users, having advanced knowledge of prices and demand of electricity, can manage their load efficiently. In this paper, a recurrent neural network (RNN), long short term memory (LSTM), is used for electricity price and demand forecasting using big data. Researchers are working actively to propose new models of forecasting. These models contain a single input variable as well as multiple variables. From the literature, we observed that the use of multiple variables enhances the forecasting accuracy. Hence, our proposed model uses multiple variables as input and forecasts the future values of electricity demand and price. The hyperparameters of this algorithm are tuned using the Jaya optimization algorithm to improve the forecasting ability and increase the training mechanism of the model. Parameter tuning is necessary because the performance of a forecasting model depends on the values of these parameters. Selection of inappropriate values can result in inaccurate forecasting. So, integration of an optimization method improves the forecasting accuracy with minimum user efforts. For efficient forecasting, data is preprocessed and cleaned from missing values and outliers, using the z-score method. Furthermore, data is normalized before forecasting. The forecasting accuracy of the proposed model is evaluated using the root mean square error (RMSE) and mean absolute error (MAE). For a fair comparison, the proposed forecasting model is compared with univariate LSTM and support vector machine (SVM). The values of the performance metrics depict that the proposed model has higher accuracy than SVM and univariate LSTM.

3.
Comput Intell Neurosci ; 2016: 8491046, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26819593

RESUMEN

We studied the impact of 2D and 3D educational contents on learning and memory recall using electroencephalography (EEG) brain signals. For this purpose, we adopted a classification approach that predicts true and false memories in case of both short term memory (STM) and long term memory (LTM) and helps to decide whether there is a difference between the impact of 2D and 3D educational contents. In this approach, EEG brain signals are converted into topomaps and then discriminative features are extracted from them and finally support vector machine (SVM) which is employed to predict brain states. For data collection, half of sixty-eight healthy individuals watched the learning material in 2D format whereas the rest watched the same material in 3D format. After learning task, memory recall tasks were performed after 30 minutes (STM) and two months (LTM), and EEG signals were recorded. In case of STM, 97.5% prediction accuracy was achieved for 3D and 96.6% for 2D and, in case of LTM, it was 100% for both 2D and 3D. The statistical analysis of the results suggested that for learning and memory recall both 2D and 3D materials do not have much difference in case of STM and LTM.


Asunto(s)
Ondas Encefálicas/fisiología , Encéfalo/fisiología , Aprendizaje , Recuerdo Mental/fisiología , Reconocimiento Visual de Modelos/fisiología , Represión Psicológica , Adolescente , Adulto , Mapeo Encefálico , Electroencefalografía , Femenino , Humanos , Masculino , Memoria a Corto Plazo/fisiología , Curva ROC , Máquina de Vectores de Soporte , Adulto Joven
4.
Front Hum Neurosci ; 10: 687, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28163676

RESUMEN

Assessing a person's intelligence level is required in many situations, such as career counseling and clinical applications. EEG evoked potentials in oddball task and fluid intelligence score are correlated because both reflect the cognitive processing and attention. A system for prediction of an individual's fluid intelligence level using single trial Electroencephalography (EEG) signals has been proposed. For this purpose, we employed 2D and 3D contents and 34 subjects each for 2D and 3D, which were divided into low-ability (LA) and high-ability (HA) groups using Raven's Advanced Progressive Matrices (RAPM) test. Using visual oddball cognitive task, neural activity of each group was measured and analyzed over three midline electrodes (Fz, Cz, and Pz). To predict whether an individual belongs to LA or HA group, features were extracted using wavelet decomposition of EEG signals recorded in visual oddball task and support vector machine (SVM) was used as a classifier. Two different types of Haar wavelet transform based features have been extracted from the band (0.3 to 30 Hz) of EEG signals. Statistical wavelet features and wavelet coefficient features from the frequency bands 0.0-1.875 Hz (delta low) and 1.875-3.75 Hz (delta high), resulted in the 100 and 98% prediction accuracies, respectively, both for 2D and 3D contents. The analysis of these frequency bands showed clear difference between LA and HA groups. Further, discriminative values of the features have been validated using statistical significance tests and inter-class and intra-class variation analysis. Also, statistical test showed that there was no effect of 2D and 3D content on the assessment of fluid intelligence level. Comparisons with state-of-the-art techniques showed the superiority of the proposed system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA