Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(16)2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39204886

RESUMEN

To achieve Level 4 and above autonomous driving, a robust and stable autonomous driving system is essential to adapt to various environmental changes. This paper aims to perform vehicle pose estimation, a crucial element in forming autonomous driving systems, more universally and robustly. The prevalent method for vehicle pose estimation in autonomous driving systems relies on Real-Time Kinematic (RTK) sensor data, ensuring accurate location acquisition. However, due to the characteristics of RTK sensors, precise positioning is challenging or impossible in indoor spaces or areas with signal interference, leading to inaccurate pose estimation and hindering autonomous driving in such scenarios. This paper proposes a method to overcome these challenges by leveraging objects registered in a high-precision map. The proposed approach involves creating a semantic high-definition (HD) map with added objects, forming object-centric features, recognizing locations using these features, and accurately estimating the vehicle's pose from the recognized location. This proposed method enhances the precision of vehicle pose estimation in environments where acquiring RTK sensor data is challenging, enabling more robust and stable autonomous driving. The paper demonstrates the proposed method's effectiveness through simulation and real-world experiments, showcasing its capability for more precise pose estimation.

2.
Sensors (Basel) ; 22(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36501795

RESUMEN

Autonomous driving and its real-world implementation have been among the most actively studied topics in the past few years. In recent years, this growth has been accelerated by the development of advanced deep learning-based data processing technologies. Moreover, large automakers manufacture vehicles that can achieve partially or fully autonomous driving for driving on real roads. However, self-driving cars are limited to some areas with multi-lane roads, such as highways, and self-driving cars that drive in urban areas or residential complexes are still in the development stage. Among autonomous vehicles for various purposes, this paper focused on the development of autonomous vehicles for garbage collection in residential areas. Since we set the target environment of the vehicle as a residential complex, there is a difference from the target environment of a general autonomous vehicle. Therefore, in this paper, we defined ODD, including vehicle length, speed, and driving conditions for the development vehicle to drive in a residential area. In addition, to recognize the vehicle's surroundings and respond to various situations, it is equipped with various sensors and additional devices that can notify the outside of the vehicle's state or operate it in an emergency. In addition, an autonomous driving system capable of object recognition, lane recognition, route planning, vehicle manipulation, and abnormal situation detection was configured to suit the vehicle hardware and driving environment configured in this way. Finally, by performing autonomous driving in the actual experimental section with the developed vehicle, it was confirmed that the function of autonomous driving in the residential area works appropriately. Moreover, we confirmed that this vehicle would support garbage collection works through the experiment of work efficiency.


Asunto(s)
Conducción de Automóvil , Vehículos Autónomos , Comercio , Reconocimiento en Psicología , Tecnología
3.
Sensors (Basel) ; 21(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34770429

RESUMEN

3D visual recognition is a prerequisite for most autonomous robotic systems operating in the real world. It empowers robots to perform a variety of tasks, such as tracking, understanding the environment, and human-robot interaction. Autonomous robots equipped with 3D recognition capability can better perform their social roles through supportive task assistance in professional jobs and effective domestic services. For active assistance, social robots must recognize their surroundings, including objects and places to perform the task more efficiently. This article first highlights the value-centric role of social robots in society by presenting recently developed robots and describes their main features. Instigated by the recognition capability of social robots, we present the analysis of data representation methods based on sensor modalities for 3D object and place recognition using deep learning models. In this direction, we delineate the research gaps that need to be addressed, summarize 3D recognition datasets, and present performance comparisons. Finally, a discussion of future research directions concludes the article. This survey is intended to show how recent developments in 3D visual recognition based on sensor modalities using deep-learning-based approaches can lay the groundwork to inspire further research and serves as a guide to those who are interested in vision-based robotics applications.


Asunto(s)
Robótica , Humanos , Visión Ocular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA