Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 5): 850-864, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33017318

RESUMEN

The synthetically modified green fluorescent protein chromophore analogue 3,4,5-trimethoxybenzylidene imidazolinone (1) yielded five polymorphs (I, II, III, IV, V) concomitantly irrespective of the solvent used for crystallization. The pentamorphic modification of 1 is solely due to the interplay of iso-energetic weak intermolecular interactions in molecular associations as well as the conformational flexibility offered by a C-C single bond, which connects the electron-deficient moiety imidazolinone with the electron-rich trimethoxybenzylidene group. A common structural feature observed in all the polymorphs is the formation of a `zero-dimensional' centrosymmetric dimeric unit through a short and linear C-H...O hydrogen bond engaging phenyl C-H and imidazolinone carbonyl oxygen. However, the networking of these dimeric units showed a subtle difference in all the polymorphs. The 2D isostructurality was observed between polymorphs I, II and III, while the other two polymorphs IV and V revealed only `zero-dimensional' isostructurality. The different fluorescence emissions of Form I (blue) and Forms II to V (yellow) were attributed to the differences in π-stacking interactions. It shows that one can modulate the photophysical properties of these smart materials by slightly altering their crystal structure. Such an approach will aid in developing new multi-colour organic fluorescent materials of varying crystal structures for live-cell imaging and fluorescent sensing applications.


Asunto(s)
Compuestos de Bencilideno/química , Proteínas Fluorescentes Verdes/química , Imidazolinas/química , Sustancias Luminiscentes/química , Cristalización , Cristalografía por Rayos X , Enlace de Hidrógeno , Modelos Moleculares
2.
Angew Chem Int Ed Engl ; 59(45): 19878-19883, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32667123

RESUMEN

Single crystals of optoelectronic materials that respond to external stimuli, such as mechanical, light, or heat, are immensely attractive for next generation smart materials. Here we report single crystals of a green fluorescent protein (GFP) chromophore analogue with irreversible mechanical bending and associated unusual enhancement of the fluorescence, which is attributed to the strained molecular packing in the perturbed region. Soft crystalline materials with such fluorescence intensity modulations occurring in response to mechanical stimuli under ambient pressure conditions will have potential implications for the design of technologically relevant tunable fluorescent materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA