Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemphyschem ; 13(1): 66-73, 2012 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-22162035

RESUMEN

Chemical etching is widely applied to texture the surface of sputter-deposited zinc oxide for light scattering in thin-film silicon solar cells. Based on experimental findings from the literature and our own results we propose a model that explains the etching behavior of ZnO depending on the structural material properties and etching agent. All grain boundaries are prone to be etched to a certain threshold, that is defined by the deposition conditions and etching solution. Additionally, several approaches to modify the etching behavior through special preparation and etching steps are provided.

2.
Nanotechnology ; 21(10): 105709, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20160335

RESUMEN

Gold electrodes integrated into silicon scanning force microscopy (SFM) probes allow the acquisition of spatially correlated data for sample morphology (via SFM) and local electrochemical reactivity via scanning electrochemical microscopy (SECM). The lateral resolution of both techniques is controlled by different properties of the integrated probes. The topographic tracking provided by the SFM mechanism allows the realization of very small working distances for the SECM measurements. Microfabrication technology was used in order to reduce the size of the active electrode area of the tip into the sub-100 nm regime. The functionality of the probes was tested using electrochemical methods. Experiments revealed that the response could be quantitatively compared to numerical simulation. The low working distance, in combination with the small size of the active electrode area, allows for high lateral resolution in the SECM images. This is illustrated with different model substrates that cover a range of different rate constants and illustrate the dependence of the SECM contrast on the local kinetics of the sample in the sub-micrometre size range.

3.
Nanotechnology ; 20(7): 075302, 2009 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-19417413

RESUMEN

Oxidized boron-doped diamond (BDD) electrodes were coated with a monolayer of n-octadecyltrichlorosilane as well as of other silanes. Scanning force microscopy was applied to pattern these monolayers, utilizing doped diamond-coated conductive probes. Patterns were generated on the nanometer scale, and conditions for the patterning process were quantified with regard to humidity and potential bias. It was observed that a sample bias of 3-3.5 V and a relative humidity >70% are necessary to generate reproducible and stable patterns. At potentials and relative humidities below these values, no or incomplete removal of the monolayer occurred. The results show that electro-oxidative patterning is an expedient way for the generation of nanostructures on chemically modified BDD.

4.
Langmuir ; 24(14): 7378-87, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18553991

RESUMEN

Ultrathin titanium layers when deposited on the surface of gold can be successfully applied for infrared reflection absorption spectroscopy (IRRAS) investigations. It was shown that the reflectivity, the phase shift, and the mean square electric field of the p- and s-polarized IR radiation in up to 20 nm thick titanium layers covered with a 3-4 nm thick layer of native oxide are comparable to those of the air/gold interface. The surface selection rule is fulfilled. Thus, qualitative and quantitative analysis of 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) bilayers transferred in liquid expanded (LE) and liquid condensed (LC) states can be performed. Differences are found in the hydration state and molecular arrangement of the two investigated bilayers. In the DMPC bilayer in the LE state, the C-N bond in the positively charged choline moiety is inclined by approximately 70 degrees toward the surface of the negatively charged titanium substrate. In the phosphate moiety, the in-plane vector of the O-P-O group makes a small angle of approximately 15 degrees to the surface normal. This open structure of the lipid molecule corresponds to the B crystal structure of the DMPC molecule and provides space for strong hydration of the polar headgroup. In the DMPC bilayer in the LC state, the intermolecular distances are reduced; the C-N bond of the choline group makes a smaller angle to the surface normal, and the in-plane vector of the O-P-O group in the phosphate moiety displays a larger tilt. The degree of hydration is reduced. The arrangement of the polar headgroup region corresponds to the A crystal structure of the DMPC molecule.


Asunto(s)
Oro/química , Membrana Dobles de Lípidos/química , Oxígeno/química , Titanio/química , Dimiristoilfosfatidilcolina/química , Hidrocarburos/química , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía de Fuerza Atómica , Estructura Molecular , Fosfolípidos/química , Espectrofotometría Infrarroja , Estereoisomerismo , Propiedades de Superficie
5.
Anal Bioanal Chem ; 389(4): 1103-20, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17602213

RESUMEN

In the past 20 years the characterization of electroactive surfaces and electrode reactions by scanning probe techniques has advanced significantly, benefiting from instrumental and methodological developments in the field. Electrochemical and electrical analysis instruments are attractive tools for identifying regions of different electrochemical properties and chemical reactivity and contribute to the advancement of molecular electronics. Besides their function as a surface analytical device, they have proved to be unique tools for local synthesis of polymers, metal depots, clusters, etc. This review will focus primarily on progress made by use of scanning electrochemical microscopy (SECM), conductive AFM (C-AFM), electrochemical scanning tunneling microscopy (EC-STM), and surface potential measurements, for example Kelvin probe force microscopy (KFM), for multidimensional imaging of potential-dependent processes on metals and electrified surfaces modified with polymers and self assembled monolayers.

6.
Angew Chem Int Ed Engl ; 46(10): 1584-617, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17285666

RESUMEN

Not only in electrochemistry but also in biology and in membrane transport, localized processes at solid-liquid or liquid-liquid interfaces play an important role at defect sites, pores, or individual cells, but are difficult to characterize by integral investigation. Scanning electrochemical microscopy is suitable for such investigations. After two decades of development, this method is based on a solid theoretical foundation and a large number of demonstrated applications. It offers the possibility of directly imaging heterogeneous reaction rates and locally modifying substrates by electrochemically generated reagents. The applications range from classical electrochemical problems, such as the investigation of localized corrosion and electrocatalytic reactions in fuel cells, sensor surfaces, biochips, and microstructured analysis systems, to mass transport through synthetic membranes, skin and tissue, as well as intercellular communication processes. Moreover, processes can be studied that occur at liquid surfaces and liquid-liquid interfaces.


Asunto(s)
Microscopía de Sonda de Barrido/instrumentación , Microscopía de Sonda de Barrido/métodos , Electroquímica , Cinética , Tamaño de la Partícula , Sensibilidad y Especificidad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA