Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ChemSusChem ; : e202401026, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837596

RESUMEN

It is unclear, which role space charge layers (SCLs) play within an all-solid-state battery during operation with high current densities, and to which extent they form. Herein, we use a solid electrolyte with a known SCL formation and investigate it in a symmetric cell under non-blocking conditions with Li metal electrodes. Since the used LICGC™ electrolyte is known for its instability against lithium, it is protected from rapid degradation by nanometer-thin layers of TiOx deployed by atomic layer deposition. Close attention is given to the interfacial properties, as now additional Li+ can traverse through the interface depending on the applied bias potential. The interlayer's impedance response shows efficient lithium-ion conduction for low bias potentials and a diffusion-limiting effect towards high positive and negative potentials. SCLs grow up to a thickness of 5.1 µm. Additionally, estimating the apparent rate constant of the charge transfer across the interface indicates that the potentials where kinetics are hindered coincide with the widest SCLs. In conclusion, the investigation under higher steady-state currents was only possible because of the improved stability due to the interlayer. No chemo-physical failure could be observed after 800+ hours of cycling. However, SEM study shows a new phase at the interface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA