Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Commun Signal ; 20(1): 76, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35637461

RESUMEN

BACKGROUND: Acute kidney injury (AKI) is associated with a severe decline in kidney function caused by abnormalities within the podocytes' glomerular matrix. Recently, AKI has been linked to alterations in glycolysis and the activity of glycolytic enzymes, including pyruvate kinase M2 (PKM2). However, the contribution of this enzyme to AKI remains largely unexplored. METHODS: Cre-loxP technology was used to examine the effects of PKM2 specific deletion in podocytes on the activation status of key signaling pathways involved in the pathophysiology of AKI by lipopolysaccharides (LPS). In addition, we used lentiviral shRNA to generate murine podocytes deficient in PKM2 and investigated the molecular mechanisms mediating PKM2 actions in vitro. RESULTS: Specific PKM2 deletion in podocytes ameliorated LPS-induced protein excretion and alleviated LPS-induced alterations in blood urea nitrogen and serum albumin levels. In addition, PKM2 deletion in podocytes alleviated LPS-induced structural and morphological alterations to the tubules and to the brush borders. At the molecular level, PKM2 deficiency in podocytes suppressed LPS-induced inflammation and apoptosis. In vitro, PKM2 knockdown in murine podocytes diminished LPS-induced apoptosis. These effects were concomitant with a reduction in LPS-induced activation of ß-catenin and the loss of Wilms' Tumor 1 (WT1) and nephrin. Notably, the overexpression of a constitutively active mutant of ß-catenin abolished the protective effect of PKM2 knockdown. Conversely, PKM2 knockdown cells reconstituted with the phosphotyrosine binding-deficient PKM2 mutant (K433E) recapitulated the effect of PKM2 depletion on LPS-induced apoptosis, ß-catenin activation, and reduction in WT1 expression. CONCLUSIONS: Taken together, our data demonstrates that PKM2 plays a key role in podocyte injury and suggests that targetting PKM2 in podocytes could serve as a promising therapeutic strategy for AKI. TRIAL REGISTRATION: Not applicable. Video abstract.


Asunto(s)
Lesión Renal Aguda , Leucemia Mieloide Aguda , Podocitos , Lesión Renal Aguda/metabolismo , Animales , Leucemia Mieloide Aguda/metabolismo , Lipopolisacáridos/farmacología , Ratones , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Piruvato Quinasa/farmacología , beta Catenina/metabolismo
2.
Int J Mol Sci ; 22(3)2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33503959

RESUMEN

Pyruvate kinase is a key regulator in glycolysis through the conversion of phosphoenolpyruvate (PEP) into pyruvate. Pyruvate kinase exists in various isoforms that can exhibit diverse biological functions and outcomes. The pyruvate kinase isoenzyme type M2 (PKM2) controls cell progression and survival through the regulation of key signaling pathways. In cancer cells, the dimer form of PKM2 predominates and plays an integral role in cancer metabolism. This predominance of the inactive dimeric form promotes the accumulation of phosphometabolites, allowing cancer cells to engage in high levels of synthetic processing to enhance their proliferative capacity. PKM2 has been recognized for its role in regulating gene expression and transcription factors critical for health and disease. This role enables PKM2 to exert profound regulatory effects that promote cancer cell metabolism, proliferation, and migration. In addition to its role in cancer, PKM2 regulates aspects essential to cellular homeostasis in non-cancer tissues and, in some cases, promotes tissue-specific pathways in health and diseases. In pursuit of understanding the diverse tissue-specific roles of PKM2, investigations targeting tissues such as the kidney, liver, adipose, and pancreas have been conducted. Findings from these studies enhance our understanding of PKM2 functions in various diseases beyond cancer. Therefore, there is substantial interest in PKM2 modulation as a potential therapeutic target for the treatment of multiple conditions. Indeed, a vast plethora of research has focused on identifying therapeutic strategies for targeting PKM2. Recently, targeting PKM2 through its regulatory microRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) has gathered increasing interest. Thus, the goal of this review is to highlight recent advancements in PKM2 research, with a focus on PKM2 regulatory microRNAs and lncRNAs and their subsequent physiological significance.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Reprogramación Celular , Metabolismo Energético , Regulación de la Expresión Génica , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Hormonas Tiroideas/genética , Hormonas Tiroideas/metabolismo , Animales , Proteínas Portadoras/antagonistas & inhibidores , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Reprogramación Celular/genética , Susceptibilidad a Enfermedades , Desarrollo de Medicamentos , Evaluación Preclínica de Medicamentos , Metabolismo Energético/genética , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Homeostasis , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Mutación , Transporte de Proteínas , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Interferencia de ARN , ARN Largo no Codificante/genética , Investigación , Proteínas de Unión a Hormona Tiroide
3.
Cell Commun Signal ; 18(1): 126, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32795297

RESUMEN

BACKGROUND: Current pharmacological therapies and treatments targeting pancreatic neuroendocrine tumors (PNETs) have proven ineffective, far too often. Therefore, there is an urgent need for alternative therapeutic approaches. Zyflamend, a combination of anti-inflammatory herbal extracts, that has proven to be effective in various in vitro and in vivo cancer platforms, shows promise. However, its effects on pancreatic cancer, in particular, remain largely unexplored. METHODS: In the current study, we investigated the effects of Zyflamend on the survival of beta-TC-6 pancreatic insulinoma cells (ß-TC6) and conducted a detailed analysis of the underlying molecular mechanisms. RESULTS: Herein, we demonstrate that Zyflamend treatment decreased cell proliferation in a dose-dependent manner, concomitant with increased apoptotic cell death and cell cycle arrest at the G2/M phase. At the molecular level, treatment with Zyflamend led to the induction of ER stress, autophagy, and the activation of c-Jun N-terminal kinase (JNK) pathway. Notably, pharmacological inhibition of JNK abrogated the pro-apoptotic effects of Zyflamend. Furthermore, Zyflamend exacerbated the effects of streptozotocin and adriamycin-induced ER stress, autophagy, and apoptosis. CONCLUSION: The current study identifies Zyflamend as a potential novel adjuvant in the treatment of pancreatic cancer via modulation of the JNK pathway. Video abstract.


Asunto(s)
Apoptosis , Sistema de Señalización de MAP Quinasas , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/patología , Extractos Vegetales/farmacología , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Doxorrubicina/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Inflamación/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Modelos Biológicos , Ratas , Estreptozocina/farmacología
4.
Adipocyte ; 9(1): 454-471, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32779962

RESUMEN

The prevalence of obesity and its comorbidities has sparked a worldwide concern to address rates of adipose tissue accrual. Recent studies have demonstrated a novel role of Zyflamend, a blend of natural herbal extracts, in regulating lipid metabolism in several cancer cell lines through the activation of the AMPK signalling pathway. Yet, the role of Zyflamend in adipogenic differentiation and lipid metabolism remains largely unexplored. The objective of this study is to investigate the effects of Zyflamend on white 3T3-MBX pre-adipocyte differentiation and elucidate the molecular mechanisms. We demonstrate that Zyflamend treatment altered cell cycle progression, attenuated proliferation, and increased cell death of 3T3-MBX pre-adipocytes. In addition, treatment with Zyflamend inhibited lipid accumulation during the differentiation of 3T3-MBX cells, consistent with decreased expression of lipogenic genes and increased lipolysis. Mechanistically, Zyflamend-induced alterations in adipogenesis were mediated, at least in part, through the activation of AMPK, PKA, and JNK. Inhibition of AMPK partially reversed Zyflamend-induced inhibition of differentiation, whereas the inhibition of either JNK or PKA fully restored adipocyte differentiation and decreased lipolysis. Taken together, the present study demonstrates that Zyflamend, as a novel anti-adipogenic bioactive mix, inhibits adipocyte differentiation through the activation of the PKA and JNK pathways. ABBREVIATION: 7-AAD: 7-amino-actinomycin D; ACC: acetyl-CoA carboxylase; AKT: protein kinase B; AMPK: AMP-activated protein kinase; ATGL: adipose triglyceride lipase; C/EBPα: CCAAT-enhancer binding protein alpha; DMEM: Dulbecco's Modified Eagle Medium; DMSO: dimethyl sulphoxide; DTT: dithiothreitol; EGTA: ethylene glycol-bis-(2-aminoethyl)-N,N,N',N'-tetraacetic acid; ERK: extracellular signal-regulated kinases; FASN: fatty acid synthase; FBS: foetal bovine serum; GLUT: glucose transporter; HSL: hormone-sensitive lipase; IR: insulin receptor; IRS: insulin receptor substrate; JNK: c-JUN N-terminal kinase; MGL: monoacylglycerol lipase; NaF: sodium fluoride; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; PBS: phosphate buffered- saline; PCB: pyruvate carboxylase; PDE: phosphodiesterase; PKA: protein kinase cAMP-dependent; PMSF: phenylmethylsulfonyl fluoride; PPARγ: perilipin peroxisome proliferator-activated receptor gamma; PREF-1: pre-adipocyte factor 1; PVDF: polyvinylidene fluoride; RIPA: radio-immunoprecipitation assay; SDS-PAGE: sodium dodecyl sulphate polyacrylamide gel electrophoresis; SEM: standard error of the mean; SOX9: suppressor of cytokine signalling 9; TGs: triacylglycerols.


Asunto(s)
Adipogénesis/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Extractos Vegetales/farmacología , Transducción de Señal/efectos de los fármacos , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Lipólisis , Ratones
5.
Free Radic Biol Med ; 143: 176-192, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31401304

RESUMEN

Pyruvate kinase M2 is a critical enzyme that regulates cell metabolism and growth under different physiological conditions. In its metabolic role, pyruvate kinase M2 catalyzes the last glycolytic step which converts phosphoenolpyruvate to pyruvate with the generation of ATP. Beyond this metabolic role in glycolysis, PKM2 regulates gene expression in the nucleus, phosphorylates several essential proteins that regulate major cell signaling pathways, and contribute to the redox homeostasis of cancer cells. The expression of PKM2 has been demonstrated to be significantly elevated in several types of cancer, and the overall inflammatory response. The unusual pattern of PKM2 expression inspired scientists to investigate the unrevealed functions of PKM2 and the therapeutic potential of targeting PKM2 in cancer and other disorders. Therefore, the purpose of this review is to discuss the mechanistic and therapeutic potential of targeting PKM2 with the focus on cancer metabolism, redox homeostasis, inflammation, and metabolic disorders. This review highlights and provides insight into the metabolic and non-metabolic functions of PKM2 and its relevant association with health and disease.


Asunto(s)
Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/metabolismo , Inhibidores Enzimáticos/farmacología , Regulación Enzimológica de la Expresión Génica , Inflamación/enzimología , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Enfermedades Metabólicas/enzimología , Hormonas Tiroideas/metabolismo , Adenosina Trifosfato/metabolismo , Aterosclerosis/enzimología , Proliferación Celular , Glucólisis , Homeostasis , Humanos , Enfermedades Inflamatorias del Intestino/enzimología , Insulina/metabolismo , Enfermedades Renales/enzimología , Hígado/enzimología , Naftoquinonas/farmacología , Metástasis de la Neoplasia , Neoplasias/enzimología , Neuralgia/enzimología , Oxidantes/metabolismo , Oxidación-Reducción , Isoformas de Proteínas , Sepsis/enzimología , Transducción de Señal , Distribución Tisular , Proteínas de Unión a Hormona Tiroide
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA