Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 264(Pt 1): 130535, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432277

RESUMEN

This study investigated the molecular mechanism underlying the binding interaction between apigenin (API) and α-glucosidase (α-glu) by a combination of experimental techniques and computational simulation strategies. The spontaneously formation of stable API-α-glu complex was mainly driven by hydrogen bonds and hydrophobic forces, leading to a static fluorescence quenching of α-glu. The binding of API induced secondary structure and conformation changes of α-glu, decreasing the surface hydrophobicity of protein. Computational simulation results demonstrated that API could bind into the active cavity of α-glu via its interaction with active residues at the binding site. The important roles of key residues responsible for the binding stability and affinity between API and α-glu were further revealed by MM/PBSA results. In addition, it can be found that the entrance of active site tended to close after API binding as a result of its interaction with gate keeping residues. Furthermore, the structural basis for the binding interaction behavior of API was revealed and visualized by weak interaction analysis. The findings of our study revealed atomic-level mechanism of the interaction between API, which might shed light on the development of better inhibitors.


Asunto(s)
Apigenina , alfa-Glucosidasas , alfa-Glucosidasas/metabolismo , Inhibidores de Glicósido Hidrolasas/química , Simulación del Acoplamiento Molecular , Análisis Espectral , Sitios de Unión , Unión Proteica , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA