Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 313: 137564, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36526141

RESUMEN

Cobalt mediated perovskite oxides (Ca-Fe-Co-x) were prepared for heterogeneous Fenton-like, which exhibited excellent tetracycline (TC) degradation efficiency and wider pH suitability (3-11). Experimental results showed that Ca-Fe-Co-1.0 sample displayed the highest degradation rate could reach 80.5% under neutral conditions, and maintain at around 80% after four cycles. The analysis of degradation mechanism showed that the redox of Fe2+/Fe3+ and Co2+/Co3+ significant enhanced the activation of H2O2 to superoxide radical (∙O2-). Meanwhile, the hydroxyl radical (∙OH) was also detected by ESR analysis. In addition, the possible degradation pathway and mechanism of TC were deduced via UPLC-QTOF/MS analysis and density functional theory (DFT) calculations. The toxicity of TC and its intermediates were also evaluated by the ECOSAR software. The Ca-Fe-Co-1.0/nanocellulose aerogel (NCA) displayed highly removal efficiency of TC wastewater in the long-term operation conduction. This study provided a feasible method to design and synthesis heterogeneous Fenton-like catalysts for antibiotic degradation.


Asunto(s)
Peróxido de Hidrógeno , Superóxidos , Cobalto , Óxidos , Antibacterianos , Tetraciclina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA