Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36676612

RESUMEN

Anti-icing coatings have provided a very good alternative to current, uneconomic, active deicing methods, and their use would bring a number of significant benefits to many industries, such as aviation and energy. Some of the most promising icephobic surfaces are those with hydrophobic properties. However, the relationship between hydrophobicity and low ice adhesion is not yet clearly defined. In this work, chemical modification of an epoxy gelcoat with chemical modifiers from the group of double organofunctionalized polysiloxanes (generally called multifunctionalized organosilicon compounds (MFSCs)) was applied. The anti-icing properties of manufactured coatings were determined by means of measurements of shear strength between the ice layer and the modified surface, conducted using a tensile machine. In the work, tests were also performed on the roughness, wettability, and durability of the properties in an aging chamber. It was found that the performed modifications of the coating's chemical composition by the addition of polysiloxanes enabled us to reduce ice adhesion by 51% and to increase the water contact angle by 14% in comparison to the neat gelcoat. A reduction in ice adhesion was also observed with the increasing water contact angle and with decreasing surface roughness. In addition, only one modification recorded an increase in ice adhesion after exposure in the aging chamber.

2.
Materials (Basel) ; 15(9)2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35591445

RESUMEN

Within these studies, the effect of surface topography for hydrophobic coatings was studied both numerically and experimentally. Chemically modified polyurethane coating was patterned by application of a laser beam. A set of patterns with variously distant linear peaks and grooves was obtained. The cross section of the pattern showed that the edges of the peaks and grooves were not sharp, instead forming a rounded, rectangle-like shape. For such surfaces, experimental studies were performed, and in particular the static contact angle (SCA), contact angle hysteresis (CAH), and roll-off angle (ROA) were measured. Profilometry was used to create a numerical representation of the surface. Finite volume method was then applied to simulate the behavior of the water droplets. The model developed herewith enabled us to reproduce the experimental results with good accuracy. Based on the verified model, the calculation was extended to study the behavior of the water droplet on the simulated patterns, both spiked and rectangular. These two cases, despite a similar SCA of the water droplet, have shown extremely different ROA. Thus, more detailed studies were dedicated to other geometrical features of such topography, such as the size and distance of the surface elements. Based on the results obtained herewith, the future design of superhydrophobic and/or icephobic topography is discussed.

3.
Materials (Basel) ; 14(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34640083

RESUMEN

Ice formation on the aerodynamic surfaces of an aircraft is regarded as a major problem in the aerospace industry. Ice accumulation may damage parts, sensors and controllers and alter the aerodynamics of the airplane, leading to a range of undesired consequences, including flight delays, emergency landings, damaged parts and increased energy consumption. There are various approaches to reducing ice accretion, one of them being the application of icephobic coatings. In this work, commercially available polyurethane-based coatings were modified and deposited on NACA 0012 aircraft airfoils. A hybrid modification of polyurethane (PUR) topcoats was adopted by the addition of nanosilica and three-functional spherosilicates (a variety of silsesqioxane compound), which owe their unique properties to the presence of three different groups. The ice accretion on the manufactured nanocomposites was determined in an icing wind tunnel. The tests were performed under three different icing conditions: glaze ice, rime ice and mixed ice. Furthermore, the surface topography and wetting behavior (static contact angle and contact angle hysteresis) were investigated. It was found that the anti-icing properties of polyurethane nanocomposite coatings strongly depend on the icing conditions under which they are tested. Moreover, the addition of nanosilica and spherosilicates enabled the reduction of accreted ice by 65% in comparison to the neat topcoat.

4.
Materials (Basel) ; 14(16)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34443051

RESUMEN

In this work, silicone/carbon nanotube (CNT) composites were produced using a spread coating process, followed by morphological investigations and determination of their electrical properties and heating behaviour through the application of electric potential. Composites containing varying amounts of CNT (1-7%) were investigated for their thermal behaviour with the use of an IR camera. Subsequently, thermal behaviour and electrical properties were measured when the samples were stretched (up to 20%). With the 7% CNT composites, which had a conductivity of 106 S/m, it was possible to achieve a temperature of 155 °C at a relatively low voltage of 23 V. For high CNT contents, when the potential was controlled in such a way as to maintain the temperature well below 100 °C, the temperature remained almost constant at all levels of strain investigated. At higher potentials yielding temperatures around 100 °C and above, stretching had a drastic effect on temperature. These results are critical for designing composites for dynamic applications requiring a material whose properties remain stable under strain.

5.
Materials (Basel) ; 13(20)2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076362

RESUMEN

A recent discovery of the unique biological properties of two-dimensional transition metal carbides (MXenes) resulted in intensive research on their application in various biotechnological areas, including polymeric nanocomposite systems. However, the true potential of MXene as an additive to bioactive natural porous composite structures has yet to be fully explored. Here, we report that the addition of 2D Ti3C2Tx MXene by reducing the porosity of the chitosan-hyaluronate matrix nanocomposite structures, stabilized by vitamin C, maintains their desired antibacterial properties. This was confirmed by micro computed tomography (micro-CT) visualization which enables insight into the porous structure of nanocomposites. It was also found that given large porosity of the nanocomposite a small amount of MXene (1-5 wt.%) was effective against gram-negative Escherichia coli, gram-positive Staphylococcus aureus, and Bacillus sp. bacteria in a hydrogel system. Such an approach unequivocally advances the future design approaches of modern wound healing dressing materials with the addition of MXenes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA