Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Allergy ; 79(8): 2173-2185, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38995241

RESUMEN

BACKGROUND: There is evidence that global anthropogenic climate change may be impacting floral phenology and the temporal and spatial characteristics of aero-allergenic pollen. Given the extent of current and future climate uncertainty, there is a need to strengthen predictive pollen forecasts. METHODS: The study aims to use CatBoost (CB) and deep learning (DL) models for predicting the daily total pollen concentration up to 14 days in advance for 23 cities, covering all five continents. The model includes the projected environmental parameters, recent concentrations (1, 2 and 4 weeks), and the past environmental explanatory variables, and their future values. RESULTS: The best pollen forecasts include Mexico City (R2(DL_7) ≈ .7), and Santiago (R2(DL_7) ≈ .8) for the 7th forecast day, respectively; while the weakest pollen forecasts are made for Brisbane (R2(DL_7) ≈ .4) and Seoul (R2(DL_7) ≈ .1) for the 7th forecast day. The global order of the five most important environmental variables in determining the daily total pollen concentrations is, in decreasing order: the past daily total pollen concentration, future 2 m temperature, past 2 m temperature, past soil temperature in 28-100 cm depth, and past soil temperature in 0-7 cm depth. City-related clusters of the most similar distribution of feature importance values of the environmental variables only slightly change on consecutive forecast days for Caxias do Sul, Cape Town, Brisbane, and Mexico City, while they often change for Sydney, Santiago, and Busan. CONCLUSIONS: This new knowledge of the ecological relationships of the most remarkable variables importance for pollen forecast models according to clusters, cities and forecast days is important for developing and improving the accuracy of airborne pollen forecasts.


Asunto(s)
Alérgenos , Predicción , Polen , Polen/inmunología , Predicción/métodos , Humanos , Cambio Climático , Modelos Teóricos , Monitoreo del Ambiente/métodos
2.
PeerJ ; 4: e1645, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26835186

RESUMEN

The present study aimed to investigate phylogeographical patterns present within A. halleri in Central Europe. 1,281 accessions sampled from 52 populations within the investigated area were used in the study of genetic variation based on chloroplast DNA. Over 500 high-quality species occurrence records were used in ecological niche modelling experiments. We evidenced the presence of a clear phylogeographic structure within A. halleri in Central Europe. Our results showed that two genetically different groups of populations are present in western and eastern part of the Carpathians. The hypothesis of the existence of a glacial refugium in the Western Carpathians adn the Bohemian Forest cannot be rejected from our data. It seems, however, that the evidence collected during the present study is not conclusive. The area of Sudetes was colonised after LGM probably by migrants from the Bohemian Forest.

3.
Planta ; 242(6): 1479-93, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26318309

RESUMEN

MAIN CONCLUSION: Light quality has various effects on photochemistry and protein phosphorylation in Zea mays and Arabidopsis thaliana thylakoids due to different degrees of light penetration across leaves and redox status in chloroplasts. The effect of the spectral quality of light (red, R and far red, FR) on the function of thylakoid proteins in Zea mays and Arabidopsis thaliana was investigated. It was concluded that red light stimulates PSII activity in A. thaliana thylakoids and in maize bundle sheath (BS) thylakoids, but not in mesophyll (M) thylakoids. The light quality did not change PSI activity in M thylakoids of maize. FR used after a white light period increased PSI activity significantly in maize BS and only slightly in A. thaliana thylakoids. As shown by blue native (BN)-PAGE followed by SDS-PAGE, proteins were differently phosphorylated in the thylakoids, indicating their different functions. FR light increased dephosphorylation of LHCII proteins in A. thaliana thylakoids, whereas in maize, dephosphorylation did not occur at all. The rate of phosphorylation was higher in maize BS than in M thylakoids. D1 protein phosphorylation increased in maize and decreased in A. thaliana upon irradiation with both R and growth light (white light, W). Light variations did not change the level of proteins in thylakoids. Our data strongly suggest that response to light quality is a species-dependent phenomenon. We concluded that the maize chloroplasts were differently stimulated, probably due to different degrees of light penetration across the leaf and thereby the redox status in the chloroplasts. These acclimation changes induced by light quality are important in the regulation of chloroplast membrane flexibility and thus its function.


Asunto(s)
Arabidopsis/efectos de la radiación , Cloroplastos/efectos de la radiación , Luz , Tilacoides/efectos de la radiación , Zea mays/efectos de la radiación , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Tilacoides/metabolismo , Zea mays/metabolismo
4.
PLoS One ; 9(7): e102916, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25036368

RESUMEN

The aim of our study was to reveal biogeographical patterns in the native vascular flora of Iceland and to define ecological factors responsible for these patterns. We analysed dataset of more than 500,000 records containing information on the occurrence of vascular plants. Analysis of ecological factors included climatic (derived from WORLDCLIM data), topographic (calculated from digital elevation model) and geological (bedrock characteristics) variables. Spherical k-means clustering and principal component analysis were used to detect biogeographical patterns and to study the factors responsible for them. We defined 10 biotic elements exhibiting different biogeographical patterns. We showed that climatic (temperature-related) and topographic variables were the most important factors contributing to the spatial patterns within the Icelandic vascular flora and that these patterns are almost completely independent of edaphic factors (bedrock type). Our study is the first one to analyse the biogeographical differentiation of the native vascular flora of Iceland.


Asunto(s)
Flores/fisiología , Plantas , Clima , Análisis por Conglomerados , Ecología , Geografía , Islandia , Análisis de Componente Principal , Temperatura
5.
Water Air Soil Pollut ; 223(8): 5445-5458, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23002314

RESUMEN

We investigated the influence of cadmium stress on zinc hyperaccumulation, mineral nutrient uptake, and the content of metal-binding proteins in Arabidopsis halleri. The experiments were carried out using plants subjected to long-term cadmium exposure (40 days) in the concentrations of 45 and 225 µM Cd(2+). Inductively coupled plasma-mass spectrometry, size exclusion chromatography coupled with plasma-mass spectrometry, and laser ablation inductively coupled plasma-mass spectrometry used for ablation of polyacylamide gels were employed to assess the content of investigated elements in plants as well as to identify metal-binding proteins. We found that A. halleri is able to translocate cadmium to the aerial parts in high amounts (translocation index >1). We showed that Zn content in plants decreased significantly with the increase of cadmium content in the growth medium. Different positive and negative correlations between Cd content and mineral nutrients were evidenced by our study. We identified more than ten low-molecular-weight (<100 kDa) Cd-binding proteins in Cd-treated plants. These proteins are unlikely to be phytochelatins or metallothioneins. We hypothesize that low-molecular-weight Cd-binding proteins can be involved in cadmium resistance in A. halleri. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11270-012-1292-4) contains supplementary material, which is available to authorized users.

6.
Protoplasma ; 248(4): 663-71, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20960016

RESUMEN

Changes in the water permeability, aquaporin (AQP) activity, of leaf cells were investigated in response to different heavy metals (Zn(2+), Pb(2+), Cd(2+), Hg(2+)). The cell pressure probe experiments were performed on onion epidermal cells as a model system. Heavy metal solutions at different concentrations (0.05 µM-2 mM) were used in our experiments. We showed that the investigated metal ions can be arranged in order of decreasing toxicity (expressed as a decrease in water permeability) as follows: Hg>Cd>Pb>Zn. Our results showed that ß-mercaptoethanol treatment (10 mM solution) partially reverses the effect of AQP gating. The magnitude of this reverse differed depending on the metal and its concentration. The time course studies of the process showed that the gating of AQPs occurred within the first 10 min after the application of a metal. We also showed that after 20-40 min from the onset of metal treatment, the water flow through AQPs stabilized and remained constant. We observed that irrespective of the metal applied, the effect of AQP gating can be recorded within the first 10 min after the administration of metal ions. More generally, our results indicate that the toxic effects of investigated metal ions on the cellular level may involve AQP gating.


Asunto(s)
Acuaporinas/metabolismo , Activación del Canal Iónico , Metales Pesados/metabolismo , Cebollas/metabolismo , Epidermis de la Planta/citología , Acuaporinas/efectos de los fármacos , Permeabilidad de la Membrana Celular , Mercaptoetanol/farmacología , Metales Pesados/farmacología , Cebollas/efectos de los fármacos , Epidermis de la Planta/efectos de los fármacos , Epidermis de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Proteínas de Plantas/efectos de los fármacos , Proteínas de Plantas/metabolismo , Presión , Factores de Tiempo , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA