Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Oncotarget ; 9(86): 35639-35654, 2018 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-30479694

RESUMEN

The CYP19A1 gene encodes aromatase, an enzyme that converts androgens into estrogens and consequently directly contributes to both the depletion of androgens and the synthesis of estrogens in several organs. Aromatase is critical for diverse biological processes such as proliferation, regulation of fat metabolism and hormone signaling. Additionally, it is also overexpressed in diverse cancers and drives hormone-dependent tumor progression and increases 17-ß-estradiol (E2) within tumors and the tumor microenvironment. Although the inhibition of E2 production via aromatase inhibitors represents a major therapeutic paradigm in clinical oncology, fundamental questions regarding how cancer cells gain the capacity to overexpress aromatase remain unanswered. Multiple tissue-specific CYP19A1 promoters are known to be aberrantly active in tumors, yet how this occurs is unclear. Here, for the first time, we report that Dishevelled (DVL) proteins, which are key mediators of Wnt signaling, regulate aromatase expression in multiple breast cancer cell lines. We also report that DVL enters the nucleus and localizes to at least two different CYP19A1 promoters (pII and I.4) previously reported to drive overexpression in breast tumors and to a very distal CYP19A1 placental promoter (I.1) that remains poorly characterized. We go on to demonstrate that DVL-1 and DVL-3 loss of function leads to differential changes in various aromatase transcripts and in E2 production. The report, herein, uncovers a new regulator of CYP19A1 transcription and for the first time demonstrates that DVL, a critical mediator of WNT signaling, contributes to aberrant breast cancer-associated estrogen production.

2.
Int J Mol Sci ; 16(1): 950-65, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25569080

RESUMEN

SIRT1, an NAD(+)-dependent deacetylase, has been described in the literature as a major player in the regulation of cellular stress responses. Its expression has been shown to be altered in cancer cells, and it targets both histone and non-histone proteins for deacetylation and thereby alters metabolic programs in response to diverse physiological stress. Interestingly, many of the metabolic pathways that are influenced by SIRT1 are also altered in tumor development. Not only does SIRT1 have the potential to regulate oncogenic factors, it also orchestrates many aspects of metabolism and lipid regulation and recent reports are beginning to connect these areas. SIRT1 influences pathways that provide an alternative means of deriving energy (such as fatty acid oxidation and gluconeogenesis) when a cell encounters nutritive stress, and can therefore lead to altered lipid metabolism in various pathophysiological contexts. This review helps to show the various connections between SIRT1 and major pathways in cellular metabolism and the consequence of SIRT1 deregulation on carcinogenesis and lipid metabolism.


Asunto(s)
Metabolismo de los Lípidos/fisiología , Neoplasias/patología , Sirtuina 1/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Metabolismo Energético , Ácidos Grasos/biosíntesis , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Humanos , Neoplasias/metabolismo , PPAR gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Factores de Transcripción/metabolismo
3.
CBE Life Sci Educ ; 7(4): 410-21, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19047427

RESUMEN

Research based laboratory courses have been shown to stimulate student interest in science and to improve scientific skills. We describe here a project developed for a semester-long research-based laboratory course that accompanies a genetics lecture course. The project was designed to allow students to become familiar with the use of bioinformatics tools and molecular biology and genetic approaches while carrying out original research. Students were required to present their hypotheses, experiments, and results in a comprehensive lab report. The lab project concerned the yeast casein kinase 1 (CK1) protein kinase Yck2. CK1 protein kinases are present in all organisms and are well conserved in primary structure. These enzymes display sequence features that differ from other protein kinase subfamilies. Students identified such sequences within the CK1 subfamily, chose a sequence to analyze, used available structural data to determine possible functions for their sequences, and designed mutations within the sequences. After generating the mutant alleles, these were expressed in yeast and tested for function by using two growth assays. The student response to the project was positive, both in terms of knowledge and skills increases and interest in research, and several students are continuing the analysis of mutant alleles as summer projects.


Asunto(s)
Fenómenos Fisiológicos Celulares , Biología Computacional/educación , Curriculum , Laboratorios , Biología Molecular/educación , Investigación/educación , Secuencia de Aminoácidos , Quinasa de la Caseína I/química , Secuencia Conservada , Aprendizaje , Mutagénesis Sitio-Dirigida , Mutación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Schizosaccharomyces/enzimología , Análisis y Desempeño de Tareas , Factores de Tiempo
4.
Biochim Biophys Acta ; 1640(1): 61-8, 2003 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-12676355

RESUMEN

Intersectin-long (ITSN-L) contains the invariant Dbl homology (DH) and pleckstrin homology (PH) domain structure characteristic of the majority of Dbl family proteins. This strict domain topography suggests that the PH domain serves an essential, conserved function in the regulation of the intrinsic guanine nucleotide exchange activity of the DH domain. We evaluated the role of the PH domain in regulating the DH domain function of ITSN-L. Surprisingly, we found that the PH domain was dispensable for guanine nucleotide exchange activity on Cdc42 in vitro, yet the PH domain enhanced the ability of the DH domain to activate Cdc42 signaling in vivo. PH domains can interact with phosphoinositide substrates and products of phosphatidylinositol 3-kinase (PI3K). However, PI3K activation did not modulate ITSN-L DH domain function in vivo.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Proteínas Sanguíneas/metabolismo , Proteínas Portadoras/metabolismo , Fosfoproteínas/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Células 3T3 , Animales , Proteínas Sanguíneas/química , Proteínas Sanguíneas/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Transducción de Señal
5.
J Biol Chem ; 277(35): 31808-17, 2002 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-12082106

RESUMEN

Activated Ras, but not Raf, causes transformation of RIE-1 epithelial cells, supporting the importance of Raf-independent pathways in mediating Ras transformation. The p38 and JNK mitogen-activated protein kinase cascades are activated by Ras via Raf-independent effector function. Therefore, we determined whether p38 and JNK activation are involved in Ras transformation of RIE-1 epithelial cells. Rather surprisingly, we found that pharmacologic inhibition of p38, together with Raf activation of ERK, was sufficient to mimic the morphologic and growth transformation caused by oncogenic Ras. p38 inhibition together with ERK activation also caused the same alterations in cyclin D1 and p21(CIP1) expression caused by Ras and induced an autocrine growth factor loop important for transformation. Finally, in contrast to p38, we found that JNK activation promoted Ras transformation, and that Ras deregulation of p38 and JNK was not mediated by activation of the Rac small GTPase. We conclude that a key action of Raf-independent effector pathways important for Ras transformation may involve inhibition of p38 and activation of JNK.


Asunto(s)
División Celular/fisiología , Transformación Celular Neoplásica , Genes ras , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Animales , Ciclo Celular , Línea Celular , Transformación Celular Neoplásica/efectos de los fármacos , Clonación Molecular , Medios de Cultivo Condicionados , Ciclina D1/genética , Ciclinas/metabolismo , Inhibidores Enzimáticos/farmacología , Flavonoides/farmacología , Imidazoles/farmacología , Mucosa Intestinal , Proteínas Quinasas JNK Activadas por Mitógenos , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Mutagénesis Sitio-Dirigida , Fosforilación , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Piridinas/farmacología , Ratas , Proteínas Recombinantes/metabolismo , Factor de Crecimiento Transformador alfa/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos
6.
Nat Struct Biol ; 9(6): 468-75, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12006984

RESUMEN

Activation of Rho-family GTPases involves the removal of bound GDP and the subsequent loading of GTP, all catalyzed by guanine nucleotide exchange factors (GEFs) of the Dbl-family. Despite high sequence conservation among Rho GTPases, Dbl proteins possess a wide spectrum of discriminatory potentials for Rho-family members. To rationalize this specificity, we have determined crystal structures of the conserved, catalytic fragments (Dbl and pleckstrin homology domains) of the exchange factors intersectin and Dbs in complex with their cognate GTPases, Cdc42 and RhoA, respectively. Structure-based mutagenesis of intersectin and Dbs reveals the key determinants responsible for promoting exchange activity in Cdc42, Rac1 and RhoA. These findings provide critical insight into the structural features necessary for the proper pairing of Dbl-exchange factors with Rho GTPases and now allow for the detailed manipulation of signaling pathways mediated by these oncoproteins in vivo.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas de Unión al GTP rho/química , Proteínas de Unión al GTP rho/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Activación Enzimática , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas/química , Proteínas/metabolismo , Alineación de Secuencia , Relación Estructura-Actividad , Especificidad por Sustrato , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T , Proteína de Unión al GTP cdc42/química , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/química , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rhoA/química , Proteína de Unión al GTP rhoA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA